Advance Search
Volume 43 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
Deng Jian, Xiong Qingwen, Gou Junli, Liu Yu, Bao Hui, Shen Danhong, Zhou Jiayue. PSA-Based Uncertainty Analysis of Pressurized Water Reactor LBLOCA[J]. Nuclear Power Engineering, 2022, 43(5): 188-194. doi: 10.13832/j.jnpe.2022.05.0188
Citation: Deng Jian, Xiong Qingwen, Gou Junli, Liu Yu, Bao Hui, Shen Danhong, Zhou Jiayue. PSA-Based Uncertainty Analysis of Pressurized Water Reactor LBLOCA[J]. Nuclear Power Engineering, 2022, 43(5): 188-194. doi: 10.13832/j.jnpe.2022.05.0188

PSA-Based Uncertainty Analysis of Pressurized Water Reactor LBLOCA

doi: 10.13832/j.jnpe.2022.05.0188
  • Received Date: 2021-09-07
  • Accepted Date: 2022-02-14
  • Rev Recd Date: 2022-01-18
  • Publish Date: 2022-10-12
  • In order to combine deterministic and probabilistic analysis to carry out more realistic safety analysis of nuclear reactor accident conditions, a method combining probabilistic safety analysis (PSA) and best estimate plus uncertainty (BEPU) analysis is proposed, the extreme accident of the double-ended fracture large-break loss of water accident (LBLOCA) in a typical three-loop pressurized water reactor cold pipe section is taken as the object. First, the accident failure analysis of the emergency core cooling system is carried out based on PSA. Then, combined with BEPU analysis, the cladding peak temperature (PCT) distribution and conditional core damage probability (CCDP) of each accident sequence in the event tree are evaluated, and the core damage frequency of the PWR in this accident condition is finally determined. The analysis results show that the emergency core cooling system of PWR can ensure the safety of the reactor under the condition of double-ended fracture of cold pipe section, and a row of low-pressure safety injection systems are sufficient to remove the residual heat of the core and ensure the safety of the reactor.

     

  • loading
  • [1]
    单建强, 廖承奎, 苟军利, 等. 压水堆核电厂瞬态安全数值分析方法[M]. 西安: 西安交通大学出版社, 2016: 229.
    [2]
    周法清. 核电厂概率安全评价[M]. 上海: 上海交通大学出版社, 1996: 243.
    [3]
    IAEA. Safety margins of operating reactors analysis of uncertainties and implications for decision making: IAEA TECDOC No. 1332[R]. Vienna: IAEA, 2003.
    [4]
    靖剑平,贾斌,高新力,等. 最佳估算加不确定性分析方法在我国核安全审评中的应用[J]. 核安全,2016, 15(4): 11-17.
    [5]
    IAEA. Accident analysis for nuclear power plants: safety reports series No. 23[R]. Vienna: IAEA, 2002.
    [6]
    KANG D G, AHN S H, CHANG S H. A combined deterministic and probabilistic procedure for safety assessment of beyond design basis accidents in nuclear power plant: application to ECCS performance assessment for design basis LOCA redefinition[J]. Nuclear Engineering and Design, 2013, 260: 165-174. doi: 10.1016/j.nucengdes.2013.03.033
    [7]
    MARTORELL S, SÁNCHEZ-SÁEZ F, VILLANUEVA J F, et al. An extended BEPU approach integrating probabilistic assumptions on the availability of safety systems in deterministic safety analyses[J]. Reliability Engineering & System Safety, 2017, 167: 474-483.
    [8]
    DU Y, LI H X, LIANG T H, et al. Uncertainty analysis of the conditional exceedance probability calculation for a probabilistically significant SBO sequence[J]. Nuclear Technology, 2019, 205(1-2): 128-139. doi: 10.1080/00295450.2018.1494998
    [9]
    DENG J, DING S H, LI Z C, et al. The development of ARSAC for modeling nuclear power plant system[J]. Progress in Nuclear Energy, 2021, 140: 103880. doi: 10.1016/j.pnucene.2021.103880
    [10]
    NISSLEY M E, FREPOLI C, OHKAWA K, et al. Realistic large-break LOCA evaluation methodology using the automated statistical treatment of uncertainty method (ASTRUM): Westinghouse Propriety Report, WCAP-1[R]. 2003
    [11]
    IAEA. Procedures for conducting probabilistic safety assessments of nuclear power plants (level 1): IAEA safety series NO. 50-p-4[R]. Vienna: IAEA, 1992.
    [12]
    ZIO E. Integrated deterministic and probabilistic safety assessment: concepts, challenges, research directions[J]. Nuclear Engineering and Design, 2014, 280: 413-419. doi: 10.1016/j.nucengdes.2014.09.004
    [13]
    王洋洋. 核电厂典型事故分析不确定性评价方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
    [14]
    宋建阳,杨江,刘井泉,等. 风险指引的CPR1000核电厂LBLOCA分析方法初步研究[J]. 原子能科学技术,2018, 52(6): 1028-1033. doi: 10.7538/yzk.2017.youxian.0497
    [15]
    BOYACK B, DUFFEY R, GRIFFITH G, et al. Quantifying reactor safety margins: application of code scaling, applicability, and uncertainty evaluation methodology to a large-break, loss-of-coolant accident: NUREG/CR-5249[R]. Washington: EG&G Idaho, 1989.
    [16]
    XIONG Q W, GOU J L, CHEN W, et al. Investigation of uncertainty quantification methods for constitutive models and the application to LOFT LBLOCA[J]. Annals of Nuclear Energy, 2019, 132: 119-133. doi: 10.1016/j.anucene.2019.04.028
    [17]
    REVENTOS F, PEREZ M, BATET L, et al. BEMUSE phase V report: uncertainty and sensitivity analysis of a LBLOCA in Zion nuclear power plant: NEA/SCNI/R(2009)13[R]. OECD, 2009
    [18]
    USNRC. Estimating loss-of-coolant accident (LOCA) frequencies through the elicitation process: NUREG-1829[R]. Washington: USNRC, 2008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (163) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return