Advance Search
Volume 43 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Liu Antai, Cheng Linhai, Gu Haifeng, Yan Changqi, Meng Zhaoming, Gong Suijun. Study on Slug Characteristics of Air-water Two-phase Flow in Horizontal Narrow Rectangular Channel[J]. Nuclear Power Engineering, 2022, 43(6): 24-29. doi: 10.13832/j.jnpe.2022.06.0024
Citation: Liu Antai, Cheng Linhai, Gu Haifeng, Yan Changqi, Meng Zhaoming, Gong Suijun. Study on Slug Characteristics of Air-water Two-phase Flow in Horizontal Narrow Rectangular Channel[J]. Nuclear Power Engineering, 2022, 43(6): 24-29. doi: 10.13832/j.jnpe.2022.06.0024

Study on Slug Characteristics of Air-water Two-phase Flow in Horizontal Narrow Rectangular Channel

doi: 10.13832/j.jnpe.2022.06.0024
  • Received Date: 2021-12-17
  • Rev Recd Date: 2022-07-12
  • Publish Date: 2022-12-14
  • As the key parameters of slug flow, slug velocity and liquid film thickness are of great significance in heat transfer analysis and mechanical analysis. In this paper, the characteristics of slug in a horizontal narrow rectangular channel with 1.9 mm×68 mm are studied by using high-speed camera and PCB liquid film sensor. For liquid Reynolds number ${{Re}}_{\text{l}}\text{ < 2500}$) , the rectangular channel is a laminar area; For Rel≥2500, the rectangular channel is a turbulent area. Based on the gas-liquid two-phase mixing velocity, the predictive relation of slug velocity is fitted respectively. The results show that the laminar area distribution coefficient (C0) can be calculated by Ishii equation and the drift velocity is 0; the turbulent area C0 is 1.0. For slug Reynolds number Reb<3100, the liquid film thickness (δb) at the bottom of slug increases with the increase of capillary number; For Reb≥3100, δb shows volatility. Existing δb predictive relation is not applicable to narrow rectangular channels. Considering the influence of channel aspect ratio, a new δb predictive relation is proposed to verify 210 data in the literature, and the prediction errors are all within ±20%.

     

  • loading
  • [1]
    谢清清,阎昌琪,曹夏昕,等. 窄矩形通道内单相水阻力特性实验研究[J]. 原子能科学技术,2012, 46(2): 181-185.
    [2]
    黄豪杰. 窄微通道内液膜厚度特性及其在沸腾传热中的应用[D]. 重庆: 重庆大学, 2018.
    [3]
    HIBIKI T, MISHIMA K. Flow regime transition criteria for upward two-phase flow in vertical narrow rectangular channels[J]. Nuclear Engineering and Design, 2001, 203(2-3): 117-131. doi: 10.1016/S0029-5493(00)00306-X
    [4]
    YUAN P, DENG J, PAN L M, et al. Air-water two-phase flow regime and transition criteria in vertical upward narrow rectangular channels[J]. Progress in Nuclear Energy, 2021, 136: 103750. doi: 10.1016/j.pnucene.2021.103750
    [5]
    王洋,阎昌琪,孙立成,等. 竖直窄矩形通道内弹状流中液膜特性研究[J]. 原子能科学技术,2014, 48(1): 33-38. doi: 10.7538/yzk.2014.48.01.0033
    [6]
    王洋,阎昌琪,孙立成,等. 竖直窄矩形通道内空气-水两相流中气弹运动速度研究[J]. 原子能科学技术,2013, 47(12): 2202-2207. doi: 10.7538/yzk.2013.47.12.2202
    [7]
    闫超星,阎昌琪,孙立成. 倾斜窄矩形通道内弹状流特性的实验研究[J]. 高校化学工程学报,2015, 29(3): 551-556. doi: 10.3969/j.issn.1003-9015.2015.03.008
    [8]
    LIU A T, YAN C Q, ZHU F Q, et al. Liquid film thickness of vertical upward annular flow in narrow rectangular channel[J]. Chemical Engineering Research and Design, 2021, 175: 10-24. doi: 10.1016/j.cherd.2021.08.011
    [9]
    MISHIMA K, HIBIKI T, NISHIHARA H. Some characteristics of gas-liquid flow in narrow rectangular ducts[J]. International Journal of Multiphase Flow, 1993, 19(1): 115-124. doi: 10.1016/0301-9322(93)90027-R
    [10]
    ISHII M. One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes: ANL-77-47[R]. USA: ANL, 1977.
    [11]
    夏国栋,周芳德,胡明胜. 倾斜上升弹状流中Taylor气泡运动速度研究[J]. 化学工程,1997, 25(5): 36-41.
    [12]
    ZHENG D H, CHE D F. Experimental study on hydrodynamic characteristics of upward gas–liquid slug flow[J]. International Journal of Multiphase Flow, 2006, 32(10-11): 1191-1218. doi: 10.1016/j.ijmultiphaseflow.2006.05.012
    [13]
    WANG X, GUO L J, ZHANG X M. An experimental study of the statistical parameters of gas–liquid two-phase slug flow in horizontal pipeline[J]. International Journal of Heat and Mass Transfer, 2007, 50(11-12): 2439-2443. doi: 10.1016/j.ijheatmasstransfer.2006.12.011
    [14]
    HAN Y, SHIKAZONO N. Measurement of liquid film thickness in micro square channel[J]. International Journal of Multiphase Flow, 2009, 35(10): 896-903. doi: 10.1016/j.ijmultiphaseflow.2009.06.006
    [15]
    BRETHERTON F P. The motion of long bubbles in tubes[J]. Journal of Fluid Mechanics, 1960, 10(2): 166-188.
    [16]
    AUSSILLOUS P, QUERE D. Quick deposition of a fluid on the wall of a tube[J]. Physics of Fluids, 2000, 12(10): 2367-2371. doi: 10.1063/1.1289396
    [17]
    TAYLOR G I. Deposition of a viscous fluid on the wall of a tube[J]. Journal of Fluid Mechanics, 1961, 10(2): 161-165. doi: 10.1017/S0022112061000159
    [18]
    YOUN Y J, LEE C K, SHIKAZONO N, et al. Theoretical and experimental study on liquid film thicknesses of unsteady slug flows in a capillary tube[J]. International Journal of Multiphase Flow, 2021, 134: 103470. doi: 10.1016/j.ijmultiphaseflow.2020.103470
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (196) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return