Citation: | Qian Guanhua, Yu Tao, Yang Tao, Zhao Yanan, Zhao Pengcheng. Research and Platform Development of Multi-physical Coupling Scheme Based on Unified Framework[J]. Nuclear Power Engineering, 2022, 43(6): 51-60. doi: 10.13832/j.jnpe.2022.06.0051 |
[1] |
STIMPSON S, POWERS J, CLARNO K, et al. Pellet-clad mechanical interaction screening using VERA applied to Watts Bar Unit 1, Cycles 1-3[J]. Nuclear Engineering and Design, 2018, 327: 172-186. doi: 10.1016/j.nucengdes.2017.12.015
|
[2] |
CAPPS N, STIMPSON S, CLARNO K, et al. Assessment of the analysis capability for core-wide PWR pellet-clad interaction screening of Watts Bar Unit 1[J]. Nuclear Engineering and Design, 2018, 333: 131-144. doi: 10.1016/j.nucengdes.2018.04.018
|
[3] |
LARZELERE A R. Nuclear energy advanced modeling and simulation (NEAMS)[EB/OL]. (2010-04-29). https://www.energy.gov/sites/prod/files/NEAC042910-NEAM.pdf.
|
[4] |
SOFU T, THOMAS J W. US DOE NEAMS program and SHARP multi-physics toolkit for high-fidelity SFR core design and analysis[C]//FR17: International Conference on Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development. Yekaterinburg: IAEA, 2017.
|
[5] |
YU Y Q, SHEMON E R, KIM T K, et al. Evaluation of hot channel factor for sodium-cooled fast reactors with multi-physics toolkit[J]. Nuclear Engineering and Design, 2020, 365: 110704. doi: 10.1016/j.nucengdes.2020.110704
|
[6] |
SHEMON E R, YU Y Q, JUNG Y S, et al. Extension and demonstration of NEAMS multiphysics tools to lead-cooled, sodium-cooled, and molten salt fast reactor applications[Z]. Argonne: Argonne National Lab., 2019.
|
[7] |
CHAULIAC C, ARAGONÉS J M, BESTION D, et al. NURESIM - a European simulation platform for nuclear reactor safety: multi-scale and multi-physics calculations, sensitivity and uncertainty analysis[J]. Nuclear Engineering and Design, 2011, 241(9): 3416-3426. doi: 10.1016/j.nucengdes.2010.09.040
|
[8] |
CHANARON B, AHNERT C, CROUZET N, et al. Advanced multi-physics simulation for reactor safety in the framework of the NURESAFE project[J]. Annals of Nuclear Energy, 2015, 84: 166-177. doi: 10.1016/j.anucene.2014.12.013
|
[9] |
CHANARON B. Overview of the NURESAFE European project[J]. Nuclear Engineering and Design, 2017, 321: 1-7. doi: 10.1016/j.nucengdes.2017.09.001
|
[10] |
SPASOV I, MITKOV S, KOLEV N P, et al. Best-estimate simulation of a VVER MSLB core transient using the NURESIM platform codes[J]. Nuclear Engineering and Design, 2017, 321: 26-37. doi: 10.1016/j.nucengdes.2017.03.032
|
[11] |
PÉRIN Y, VELKOV K. CTF/DYN3D multi-scale coupled simulation of a rod ejection transient on the NURESIM platform[J]. Nuclear Engineering and Technology, 2017, 49(6): 1339-1345. doi: 10.1016/j.net.2017.07.010
|
[12] |
AYDEMIR N U, TROTTIER A, XU T, et al. Coupling of reactor transient simulations via the SALOME platform[J]. Annals of Nuclear Energy, 2019, 126: 434-442. doi: 10.1016/j.anucene.2018.11.049
|
[13] |
ZHANG K L, MUÑOZ A C, SANCHEZ-ESPINOZA V H. Development and verification of the coupled thermal-hydraulic code - TRACE/SCF based on the ICoCo interface and the SALOME platform[J]. Annals of Nuclear Energy, 2021, 155: 108169. doi: 10.1016/j.anucene.2021.108169
|
[14] |
安萍,刘东,潘俊杰,等. 稳态堆芯多物理耦合系统CSSS V1.0的研发[J]. 原子能科学技术,2019, 53(5): 863-868. doi: 10.7538/yzk.2018.youxian.0473
|
[15] |
杨文,胡长军,刘天才,等. 数值反应堆及CVR1.0研究进展[J]. 原子能科学技术,2019, 53(10): 1821-1832.
|
[16] |
李相越,肖维,张滕飞,等. 热管反应堆多物理耦合平台初步研究[J]. 核动力工程,2021, 42(2): 208-212. doi: 10.13832/j.jnpe.2021.02.0208
|
[17] |
LIU Z Y, CHEN J, CAO L Z, et al. Development and verification of the high-fidelity neutronics and thermal-hydraulic coupling code system NECP-X/SUBSC[J]. Progress in Nuclear Energy, 2018, 103: 114-125. doi: 10.1016/j.pnucene.2017.11.010
|
[18] |
LIU Z Y, WANG B, ZHANG M W, et al. An internal parallel coupling method based on NECP-X and CTF and analysis of the impact of thermal-hydraulic model to the high-fidelity calculations[J]. Annals of Nuclear Energy, 2020, 146: 107645. doi: 10.1016/j.anucene.2020.107645
|
[19] |
姜荣,冯文培,陈红丽,等. 基于统一耦合框架的堆芯物理热工耦合程序的开发及验证[J]. 四川大学学报:自然科学版,2021, 58(4): 044006.
|
[20] |
罗晓,张喜林,陈红丽,等. 铅冷快堆多物理耦合分析方法及三维瞬态特性研究[J]. 核动力工程,2021, 42(S1): 11-16. doi: 10.13832/j.jnpe.2021.S1.0011
|
[21] |
ZHANG K L. The multiscale thermal-hydraulic simulation for nuclear reactors: a classification of the coupling approaches and a review of the coupled codes[J]. International Journal of Energy Research, 2020, 44(5): 3295-3315. doi: 10.1002/er.5111
|
[22] |
ZHAO P C, LEI Z Y, YU T, et al. Uncertainty analysis in coupled neutronic/thermal-hydraulic calculations based on computational fluid dynamics[J]. Annals of Nuclear Energy, 2021, 156: 108215. doi: 10.1016/j.anucene.2021.108215
|
[23] |
ZHANG X L, ZHANG K L, SANCHEZ-ESPINOZA V H, et al. Multi-scale coupling of CFD code and sub-channel code based on a generic coupling architecture[J]. Annals of Nuclear Energy, 2020, 141: 107353. doi: 10.1016/j.anucene.2020.107353
|
[24] |
ZHANG K L, ZHANG X L, SANCHEZ-ESPINOZA V, et al. Development of the coupled code–TRACE/TrioCFD based on ICoCo for simulation of nuclear power systems and its validation against the VVER-1000 coolant-mixing benchmark[J]. Nuclear Engineering and Design, 2020, 362: 110602. doi: 10.1016/j.nucengdes.2020.110602
|
[25] |
ZHANG K L. Multi-scale thermal-hydraulic developments for the detailed analysis of the flow conditions within the reactor pressure vessel of pressurized water reactors[D]. Karlsruhe: Karlsruher Institut für Technologie (KIT), 2020.
|
[26] |
SALOME. The open source integration platform for numerical simulation[EB/OL]. [2021-11-10]. https://www.salome-platform.org.
|
[27] |
ZHANG K L, SANCHEZ-ESPINOZA V, STIEGLITZ R. Implementation of the system thermal-hydraulic code TRACE into SALOME platform for multi-scale coupling[C]//50th Annual Meeting on Nuclear Technology (AMNT 2019). Berlin: INFORUM Verlags-und Verwaltungsgesellschaft, 2019.
|
[28] |
SALOME. Salome platform documentation[EB/OL]. [2021-11-10]. https://docs.salome-platform.org/7/dev/MEDCoupling/library.html
|
[29] |
DEVILLE E, PERDU F. Documentation of the interface for code coupling: ICOCO[Z]. CEA, STMF/LMES/RT/12-029/A, 2012.
|
[30] |
ADPRES. An open nuclear reactor simulator and reactor core analysis tool[EB/OL]. [2021-01-09]. https://imronuke.github.io/ADPRES/method
|
[31] |
IMRON M. Development and verification of open reactor simulator ADPRES[J]. Annals of Nuclear Energy, 2019, 133: 580-588. doi: 10.1016/j.anucene.2019.06.049
|
[32] |
刘余,张虹. RELAP5程序耦合接口的开发[J]. 核动力工程,2009, 30(6): 38-40,45.
|
[33] |
何帆. 基于RELAP5/FLUENT耦合程序的熔盐堆热工水力瞬态分析[D]. 上海: 中国科学院大学(中国科学院上海应用物理研究所), 2021.
|
[34] |
FINNEMANN H, GALATI A. NEACRP-L-335: 3-D LWR core transient benchmark specification: NEACRP-L-335 (Revision 1)[Z]. OECD/NEA, 1992.
|
[35] |
FINNEMANN H, BAUER H, GALATI A, et al. Results of LWR core transient benchmarks[Z]. Paris: Nuclear Energy Agency, 1993.
|