Citation: | Tian Zhixing, Wang Chenglong, Guo Kailun, Zhang Dalin, Tian Wenxi, Qiu Suizheng, Su Guanghui. Parameters Sensitivity Analysis and Optimization of High-Temperature Heat Pipe for Heat Pipe Reactor[J]. Nuclear Power Engineering, 2022, 43(6): 85-92. doi: 10.13832/j.jnpe.2022.06.0085 |
[1] |
TIAN Z X, LIU X, WANG C L, et al. Experimental investigation on the heat transfer performance of high-temperature potassium heat pipe for nuclear reactor[J]. Nuclear Engineering and Design, 2021, 378: 111182. doi: 10.1016/j.nucengdes.2021.111182
|
[2] |
TIAN Z X, WANG C L, HUANG J L, et al. Code development and analysis on the operation of liquid metal high temperature heat pipes under full condition[J]. Annals of Nuclear Energy, 2021, 160: 108396. doi: 10.1016/j.anucene.2021.108396
|
[3] |
FAGHRI A, HARLEY C. Transient lumped heat pipe analyses[J]. Heat Recovery Systems and CHP, 1994, 14(4): 351-363. doi: 10.1016/0890-4332(94)90039-6
|
[4] |
ZUO Z J, FAGHRI A. A network thermodynamic analysis of the heat pipe[J]. International Journal of Heat and Mass Transfer, 1998, 41(11): 1473-1484. doi: 10.1016/s0017-9310(97)00220-2
|
[5] |
FAGHRI A, BUCHKO M. Experimental and numerical analysis of low-temperature heat pipes with multiple heat sources[J]. Journal of Heat Transfer, 1991, 113(3): 728-734. doi: 10.1115/1.2910624
|
[6] |
FAGHRI A. Review and advances in heat pipe science and technology[J]. Journal of Heat Transfer, 2012, 134(12): 123001. doi: 10.1115/1.4007407
|
[7] |
CAO Y, FAGHRI A. A numerical analysis of high-temperature heat pipe startup from the frozen state[J]. Journal of Heat Transfer, 1993, 115(1): 247-254. doi: 10.1115/1.2910657
|
[8] |
TOURNIER J M, EL-GENK M S. A vapor flow model for analysis of liquid-metal heat pipe startup from a frozen state[J]. International Journal of Heat and Mass Transfer, 1996, 39(18): 3767-3780. doi: 10.1016/0017-9310(96)00066-X
|
[9] |
TOURNIER J M, EL-GENK M S. A heat pipe transient analysis model[J]. International Journal of Heat and Mass Transfer, 1994, 37(5): 753-762. doi: 10.1016/0017-9310(94)90113-9
|
[10] |
TOURNIER J M, EL-GENK M S, JUHASZ A J. Heat-pipe transient model for space applications[J]. AIP Conference Proceedings, 1991, 217(2): 857-868. doi: 10.1063/1.40099
|
[11] |
RAJESH V G, RAVINDRAN K P. Optimum heat pipe design: a nonlinear programming approach[J]. International Communications in Heat and Mass Transfer, 1997, 24(3): 371-380. doi: 10.1016/S0735-1933(97)00022-5
|
[12] |
SARAFRAZ M M, TLILI I, TIAN Z, et al. Smart optimization of a thermosyphon heat pipe for an evacuated tube solar collector using response surface methodology (RSM)[J]. Physica A:Statistical Mechanics and Its Applications, 2019, 534: 122146. doi: 10.1016/j.physa.2019.122146
|
[13] |
DE SOUSA F L, VLASSOV V, RAMOS F M. Generalized extremal optimization for solving complex optimal design problems[C]//Genetic and Evolutionary Computation Conference. Chicago: Springer, 2003: 375-376.
|
[14] |
RAO R V, MORE K C. Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm[J]. Energy Conversion and Management, 2017, 140: 24-35. doi: 10.1016/j.enconman.2017.02.068
|
[15] |
RAO R V, MORE K C. Optimal design of the heat pipe using TLBO (teaching-learning-based optimization) algorithm[J]. Energy, 2015, 80: 535-544. doi: 10.1016/j.energy.2014.12.008
|
[16] |
FAGHRI A. Heat pipe science and technology[M]. Washington: Taylor & Francis, 1995: 328.
|
[17] |
田智星,刘逍,王成龙,等. 高温钾热管稳态运行传热特性研究[J]. 原子能科学技术,2020, 54(10): 1771-1778.
|
[18] |
庄骏,张红. 热管技术及其工程应用[J]. 能源研究与利用,2000(5): 41.
|
[19] |
YUAN S W, FINKELSTEIN A B. Laminar Pipe Flow With Injection and Suction Through a Porous Wall[J]. Transactions of the American Society of Mechanical Engineers, 1956, 78(4): 719-724.
|
[20] |
CHI S W. Heat pipe theory and practice: a sourcebook[M]. Washington: Hemisphere Pub. Corp., 1976: 188.
|
[21] |
ZOHURI B. Heat pipe design and technology: a practical approach[M]. Boca Raton: CRC Press, 2011: 96.
|
[22] |
LEVY E K, CHOU S F. The sonic limit in sodium heat pipes[J]. Journal of Heat Transfer, 1973, 95(2): 218-223. doi: 10.1115/1.3450029
|
[23] |
KIM B H, PETERSON G P. Theoretical and physical interpretation of entrainment phenomenon in capillary-driven heat pipes using hydrodynamic instability theories[J]. International Journal of Heat and Mass Transfer, 1994, 37(17): 2647-2660. doi: 10.1016/0017-9310(94)90382-4
|
[24] |
CHEN S W, LIU F C, WANG T Y, et al. Modeling and analyses of boiling and capillary limitations for micro channel wick structures[J]. Journal of Mechanics, 2016, 32(3): 357-368. doi: 10.1017/jmech.2015.100
|
[25] |
TIEN C L, CHUNG K S. Entrainment limits in heat pipes[J]. AIAA Journal, 1979, 17(6): 643-646. doi: 10.2514/3.61190
|
[26] |
RICE J, FAGHRI A. Analysis of porous wick heat pipes, including capillary dry-out limitations[C]//Proceedings of the ASME 2005 International Mechanical Engineering Congress and Exposition. Orlando: ASME, 2005: 595-607. doi: 10.1115/IMECE2005-81456
|
[27] |
NODA H, YOSHIOKA K, HAMATAKE T. A model for the heat transfer limit of a screen wick heat pipe[J]. Heat Transfer-Japanese Research, 1989, 18(3): 3118-3123.
|
[28] |
DOBRAN F. Suppression of the sonic heat transfer limit in high-temperature heat pipes[J]. Journal of Heat Transfer, 1989, 111(3): 605-610. doi: 10.1115/1.3250725
|
[29] |
DO K H, KIM S J, GARIMELLA S V. A mathematical model for analyzing the thermal characteristics of a flat micro heat pipe with a grooved wick[J]. International Journal of Heat and Mass Transfer, 2008, 51(19-20): 4637-4650. doi: 10.1016/j.ijheatmasstransfer.2008.02.039
|
[30] |
CHENG P, MA H B. A mathematical model predicting the minimum meniscus radius in mixed particles[J]. Journal of Heat Transfer, 2007, 129(3): 391-394. doi: 10.1115/1.2430727
|
[31] |
BUSSE C A. Theory of the ultimate heat transfer limit of cylindrical heat pipes[J]. International Journal of Heat and Mass Transfer, 1973, 16(1): 169-186. doi: 10.1016/0017-9310(73)90260-3
|
[32] |
PRENGER JR F C, KEMME J E. Performance limits of gravity-assist heat pipes with simple wick structures[M]//REAY D A. Advances in Heat Pipe Technology. Amsterdam: Elsevier, 1982: 137-146. doi: 10.1016/B978-0-08-027284-9.50019-X
|
[33] |
LEVY E K. Theoretical investigation of heat pipes operating at low vapor pressures[J]. Journal of Engineering for Industry, 1968, 90(4): 547-552. doi: 10.1115/1.3604687
|
[34] |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. doi: 10.1109/4235.996017
|