Advance Search
Volume 43 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Li Qiong, Liu Zijing, Wang Weijia, Zhao Pengcheng, Yu Tao, Chang Haotong. Intelligent Optimization of Lead-bismuth Reactor Core Based on Radial Basis Function Surrogate Model and Niche Genetic Algorithm[J]. Nuclear Power Engineering, 2022, 43(6): 93-100. doi: 10.13832/j.jnpe.2022.06.0093
Citation: Li Qiong, Liu Zijing, Wang Weijia, Zhao Pengcheng, Yu Tao, Chang Haotong. Intelligent Optimization of Lead-bismuth Reactor Core Based on Radial Basis Function Surrogate Model and Niche Genetic Algorithm[J]. Nuclear Power Engineering, 2022, 43(6): 93-100. doi: 10.13832/j.jnpe.2022.06.0093

Intelligent Optimization of Lead-bismuth Reactor Core Based on Radial Basis Function Surrogate Model and Niche Genetic Algorithm

doi: 10.13832/j.jnpe.2022.06.0093
  • Received Date: 2021-11-22
  • Rev Recd Date: 2022-01-06
  • Publish Date: 2022-12-14
  • In order to solve the complex nonlinear multi-dimensional optimization problem under the influence of multi-factor coupling of lead-bismuth reactor, an intelligent optimization method for reactor core was constructed based on radial basis function (RBF) surrogate model prediction, orthogonal Latin hypercube sampling (OLHS) and niche genetic algorithm optimization. A design optimization platform for lead-bismuth reactor was developed, which included the functions of sampling, Monte Carlo program coupling treatment, and core parameter prediction and optimization. The scheme optimization verification was carried out with the minimum fuel loading of the core as the optimization objective. The results show that the RBF surrogate model can accurately and quickly predict the core characteristic parameters of the lead-bismuth reactor. Compared with the calculated values of the Monte Carlo program, the relative error of the predicted core effective multiplication factor k eff is within ± 0.1%. This intelligent optimization method is feasible for lead-bismuth reactor core optimization, which can find the optimal target scheme under the constraint of multi-factor co-variation, and greatly reduce the search calculation time of the design scheme. Therefore, the intelligent optimization method established in this study can provide new ideas for the optimization design of multi-physics, multi-variable and multi-constraint coupling effects of lead-bismuth reactor.

     

  • loading
  • [1]
    吴宜灿. 铅基反应堆研究进展与应用前景[J]. 现代物理知识,2018, 30(4): 35-39. doi: 10.13405/j.cnki.xdwz.2018.04.009
    [2]
    ZAMEER A, MIRZA S M, MIRZA N M. Core loading pattern optimization of a typical two-loop 300 MWe PWR using Simulated Annealing (SA), novel crossover Genetic Algorithms (GA) and hybrid GA(SA) schemes[J]. Annals of Nuclear Energy, 2014, 65: 122-131. doi: 10.1016/j.anucene.2013.10.024
    [3]
    DE MOURA MENESES A A, MACHADO M D, SCHIRRU R. Particle Swarm Optimization applied to the nuclear reload problem of a pressurized water reactor[J]. Progress in Nuclear Energy, 2009, 51(2): 319-326. doi: 10.1016/j.pnucene.2008.07.002
    [4]
    KHOSHAHVAL F, MINUCHEHR H, ZOLFAGHARI A. Performance evaluation of PSO and GA in PWR core loading pattern optimization[J]. Nuclear Engineering and Design, 2011, 241(3): 799-808. doi: 10.1016/j.nucengdes.2010.12.023
    [5]
    毛凤山,陈昌富,朱世民. 代理模型方法及其在岩土工程中的应用综述[J]. 地基处理,2020, 2(4): 295-306.
    [6]
    JIN R, CHEN W, SIMPSON T W. Comparative studies of metamodelling techniques under multiple modelling criteria[J]. Structural and Multidisciplinary Optimization, 2001, 23(1): 1-13. doi: 10.1007/s00158-001-0160-4
    [7]
    韩鼎,郑建荣. 工程优化设计中的近似模型技术[J]. 华东理工大学学报:自然科学版,2012, 38(6): 762-768.
    [8]
    SOUZA T J, MEDEIROS J A C C, GONÇALVES A C. Identification model of an accidental drop of a control rod in PWR reactors using thermocouple readings and radial basis function neural networks[J]. Annals of Nuclear Energy, 2017, 103: 204-211. doi: 10.1016/j.anucene.2017.01.004
    [9]
    鲁业明,王晓放,周方明. 一种核主泵水力模型高效低轴向载荷优化改型策略[J]. 核动力工程,2019, 40(2): 42-48. doi: 10.13832/j.jnpe.2018.06.0042
    [10]
    钟少伟. 基于代理模型的核泵水力性能优化设计研究[D]. 大连: 大连理工大学, 2018.
    [11]
    WANG J M, WANG P F, ZHANG X, et al. An adjoint-based optimization method for reducing the axial force of a reactor coolant pump[J]. Journal of Zhejiang University-SCIENCE A, 2019, 20(11): 852-863. doi: 10.1631/jzus.A1900156
    [12]
    PENG X J, WU Q, CAI Y, et al. The application of radial basis function interpolation in reactor core power distribution on-line monitoring[J]. Annals of Nuclear Energy, 2019, 132: 752-762. doi: 10.1016/j.anucene.2019.06.059
    [13]
    夏虹,李彬,刘建新. 基于RBF神经网络的压水堆堆芯三维功率分布方法研究[J]. 原子能科学技术,2014, 48(4): 698-702. doi: 10.7538/yzk.2014.48.04.0698
    [14]
    戴嘉伟,罗伟林. 动态径向基函数代理模型及在减速器优化设计中的应用研究[J]. 机电工程,2020, 37(12): 1409-1415. doi: 10.3969/j.issn.1001-4551.2020.12.003
    [15]
    胡伟. 基于并行策略的多约束代理模型优化方法研究及其应用[D]. 长沙: 湖南大学, 2020.
    [16]
    PEBESMA E J, HEUVELINK G B M. Latin hypercube sampling of Gaussian random fields[J]. Technometrics, 1999, 41(4): 303-312. doi: 10.1080/00401706.1999.10485930
    [17]
    晁童. 基于小生境遗传算法的定量关联规则算法研究[D]. 西安: 西安理工大学, 2018.
    [18]
    崔宝龙,徐国军,笪良龙,等. 采用小生境遗传算法反演浅海声速剖面研究[J]. 应用声学,2021, 40(2): 279-286. doi: 10.11684/j.issn.1000-310X.2021.02.016
    [19]
    KAN W, LI Z G, SHE D, et al. RMC – A Monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82: 121-129. doi: 10.1016/j.anucene.2014.08.048
    [20]
    ZHAO P C, LIU Z J, YU T, et al. Code development on steady-state thermal-hydraulic for small modular natural circulation lead-based fast reactor[J]. Nuclear Engineering and Technology, 2020, 52(12): 2789-2802. doi: 10.1016/j.net.2020.05.023
    [21]
    赵鹏程. 小型自然循环铅冷快堆SNCLFR-100一回路主冷却系统热工安全分析[D]. 合肥: 中国科学技术大学, 2017.
    [22]
    DRISCOLL M J, HEJZLAR P. Reactor physics challenges in GEN-IV reactor design[J]. Nuclear Engineering and Technology, 2005, 37(1): 1-10.
    [23]
    ZHANG Y, WANG C L, LAN Z K, et al. Review of thermal-hydraulic issues and studies of lead-based fast reactors[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109625. doi: 10.1016/j.rser.2019.109625
    [24]
    刘紫静,赵鹏程,任广益,等. 长寿命小型自然循环铅基快堆燃料选型[J]. 原子能科学技术,2020, 54(5): 944-953. doi: 10.7538/yzk.2019.youxian.0402
    [25]
    刘紫静,赵鹏程,张斌,等. 超长寿命小型自然循环铅铋快堆堆芯概念设计研究[J]. 原子能科学技术,2020, 54(7): 1254-1265. doi: 10.7538/yzk.2019.youxian.0720
    [26]
    GRASSO G, PETROVICH C, MATTIOLI D, et al. The core design of ALFRED, a demonstrator for the European lead-cooled reactors[J]. Nuclear Engineering and Design, 2014, 278: 287-301. doi: 10.1016/j.nucengdes.2014.07.032
    [27]
    WALLENIUS J, SUVDANTSETSEG E, FOKAU A. ELECTRA: European lead-cooled training reactor[J]. Nuclear Technology, 2012, 177(3): 303-313. doi: 10.13182/NT12-A13477
    [28]
    杨红义,过明亮. 中国实验快堆的设计创新与实现[J]. 原子能科学技术,2020, 54(S1): 199-205.
    [29]
    马桃,张维刚,唐婷,等. 基于全局敏感性分析和Kriging代理模型的汽车乘员约束系统多参数优化研究[J]. 中国机械工程,2014, 25(13): 1812-1816. doi: 10.3969/j.issn.1004-132X.2014.13.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article Metrics

    Article views (306) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return