Advance Search
Volume 43 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Ma Zhaodandan, Cong Shuo, Chen Yong, Guo Xianglong, Zhang Ruiqian, Liu Zhu, Zhang Xian. Corrosion Behavior of Alumina-forming Austenitic Heat Resistant Steel in Supercritical Carbon Dioxide[J]. Nuclear Power Engineering, 2022, 43(6): 101-107. doi: 10.13832/j.jnpe.2022.06.0101
Citation: Ma Zhaodandan, Cong Shuo, Chen Yong, Guo Xianglong, Zhang Ruiqian, Liu Zhu, Zhang Xian. Corrosion Behavior of Alumina-forming Austenitic Heat Resistant Steel in Supercritical Carbon Dioxide[J]. Nuclear Power Engineering, 2022, 43(6): 101-107. doi: 10.13832/j.jnpe.2022.06.0101

Corrosion Behavior of Alumina-forming Austenitic Heat Resistant Steel in Supercritical Carbon Dioxide

doi: 10.13832/j.jnpe.2022.06.0101
  • Received Date: 2021-12-23
  • Rev Recd Date: 2022-03-11
  • Publish Date: 2022-12-14
  • The corrosion behavior of Alloy 20Cr-25Ni and a new structural material alumina-forming austenitic heat resistant steel (AFA steel) in supercritical carbon dioxide (S-CO2) environment at 600℃/20 MPa was studied. The morphology, composition, and structure of oxide films of the two alloys were analyzed. It is found that the weight gain curves of the two alloys were in accord with the “parabola” law. The weight of corrosion products increased slowly; it was only 2.11 mg/dm2 after 1000 h. By comparison, the coarse oxide products appeared on the surface of Alloy 20Cr-25Ni and increased with the extension of corrosion time, while oxide film of AFA steel remained dense and continuous. Through the analysis of the cross-sectional morphology of the oxide film, it is found that the Alloy 20Cr-25Ni has a two-layer oxide film structure after corrosion, which is mainly composed of Fe3O4 and FeCr2O4 oxide layer and a small amount of spinel. However, there are three layers of oxide film structure in AFA steel, the middle and inner layers are Cr2O3 and Al2O3 oxide films respectively, and the outer layer is distributed with a discontinuous FeCr2O4 spinel oxide. Due to the formation of dense Al2O3 oxide film, the corrosion resistance of AFA steel is greatly improved.

     

  • loading
  • [1]
    KATO Y, NITAWAKI T, MUTO Y. Medium temperature carbon dioxide gas turbine reactor[J]. Nuclear Engineering and Design, 2004, 230(1-3): 195-207. doi: 10.1016/j.nucengdes.2003.12.002
    [2]
    黄彦平,王俊峰. 超临界二氧化碳在核反应堆系统中的应用[J]. 核动力工程,2012, 33(3): 21-27. doi: 10.3969/j.issn.0258-0926.2012.03.005
    [3]
    AHN Y, BAE S J, KIM M, et al. Review of supercritical CO2 power cycle technology and current status of research and development[J]. Nuclear Engineering and Technology, 2015, 47(6): 647-661. doi: 10.1016/j.net.2015.06.009
    [4]
    EOH J H, NO H C, YOO Y H, et al. Sodium-CO2 interaction in a supercritical CO2 power conversion system coupled with a sodium fast reactor[J]. Nuclear Technology, 2011, 173(2): 99-114. doi: 10.13182/NT11-A11541
    [5]
    YAMAMOTO Y, BRADY M P, LU Z P, et al. Creep-resistant, Al2O3-forming austenitic stainless steels[J]. Science, 2007, 316(5823): 433-436. doi: 10.1126/science.1137711
    [6]
    YAMAMOTO Y, BRADY M P, LU Z P, et al. Alumina-forming austenitic stainless steels strengthened by laves phase and MC carbide precipitates[J]. Metallurgical and Materials Transactions A, 2007, 38(11): 2737-2746. doi: 10.1007/s11661-007-9319-y
    [7]
    刘珠,郭相龙,王鹏,等. 310S不锈钢在超临界二氧化碳中的腐蚀行为研究[J]. 核动力工程,2020, 41(S1): 183-187. doi: 10.13832/j.jnpe.2020.S1.0183
    [8]
    FURUKAWA T, INAGAKI Y, ARITOMI M. Compatibility of FBR structural materials with supercritical carbon dioxide[J]. Progress in Nuclear Energy, 2011, 53(7): 1050-1055. doi: 10.1016/j.pnucene.2011.04.030
    [9]
    HE L F, ROMAN P, LENG B, et al. Corrosion behavior of an alumina forming austenitic steel exposed to supercritical carbon dioxide[J]. Corrosion Science, 2014, 82: 67-76. doi: 10.1016/j.corsci.2013.12.023
    [10]
    SHI H, JIANU A, WEISENBURGER A, et al. Corrosion resistance and microstructural stability of austenitic Fe-Cr-Al-Ni model alloys exposed to oxygen-containing molten lead[J]. Journal of Nuclear Materials, 2019, 524: 177-190. doi: 10.1016/j.jnucmat.2019.06.043
    [11]
    GIGGINS C S, PETTI F S. Oxidation of Ni-Cr-Al alloys between 1000℃ and 1200℃[J]. Journal of the Electrochemical Society, 1971, 118(11): 1782-1790. doi: 10.1149/1.2407837
    [12]
    CHEN H S, KIM S H, KIM C, et al. Corrosion behaviors of four stainless steels with similar chromium content in supercritical carbon dioxide environment at 650℃[J]. Corrosion Science, 2019, 156: 16-31. doi: 10.1016/j.corsci.2019.04.043
    [13]
    CAO G, FIROUZDOR V, SRIDHARAN K, et al. Corrosion of austenitic alloys in high temperature supercritical carbon dioxide[J]. Corrosion Science, 2012, 60: 246-255. doi: 10.1016/j.corsci.2012.03.029
    [14]
    BRADY M P, KEISER J R, MORE K L, et al. Comparison of short-term oxidation behavior of model and commercial chromia-forming ferritic stainless steels in dry and wet air[J]. Oxidation of Metals, 2012, 78(1-2): 1-16. doi: 10.1007/s11085-012-9289-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (317) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return