Citation: | Ma Zhaodandan, Cong Shuo, Chen Yong, Guo Xianglong, Zhang Ruiqian, Liu Zhu, Zhang Xian. Corrosion Behavior of Alumina-forming Austenitic Heat Resistant Steel in Supercritical Carbon Dioxide[J]. Nuclear Power Engineering, 2022, 43(6): 101-107. doi: 10.13832/j.jnpe.2022.06.0101 |
[1] |
KATO Y, NITAWAKI T, MUTO Y. Medium temperature carbon dioxide gas turbine reactor[J]. Nuclear Engineering and Design, 2004, 230(1-3): 195-207. doi: 10.1016/j.nucengdes.2003.12.002
|
[2] |
黄彦平,王俊峰. 超临界二氧化碳在核反应堆系统中的应用[J]. 核动力工程,2012, 33(3): 21-27. doi: 10.3969/j.issn.0258-0926.2012.03.005
|
[3] |
AHN Y, BAE S J, KIM M, et al. Review of supercritical CO2 power cycle technology and current status of research and development[J]. Nuclear Engineering and Technology, 2015, 47(6): 647-661. doi: 10.1016/j.net.2015.06.009
|
[4] |
EOH J H, NO H C, YOO Y H, et al. Sodium-CO2 interaction in a supercritical CO2 power conversion system coupled with a sodium fast reactor[J]. Nuclear Technology, 2011, 173(2): 99-114. doi: 10.13182/NT11-A11541
|
[5] |
YAMAMOTO Y, BRADY M P, LU Z P, et al. Creep-resistant, Al2O3-forming austenitic stainless steels[J]. Science, 2007, 316(5823): 433-436. doi: 10.1126/science.1137711
|
[6] |
YAMAMOTO Y, BRADY M P, LU Z P, et al. Alumina-forming austenitic stainless steels strengthened by laves phase and MC carbide precipitates[J]. Metallurgical and Materials Transactions A, 2007, 38(11): 2737-2746. doi: 10.1007/s11661-007-9319-y
|
[7] |
刘珠,郭相龙,王鹏,等. 310S不锈钢在超临界二氧化碳中的腐蚀行为研究[J]. 核动力工程,2020, 41(S1): 183-187. doi: 10.13832/j.jnpe.2020.S1.0183
|
[8] |
FURUKAWA T, INAGAKI Y, ARITOMI M. Compatibility of FBR structural materials with supercritical carbon dioxide[J]. Progress in Nuclear Energy, 2011, 53(7): 1050-1055. doi: 10.1016/j.pnucene.2011.04.030
|
[9] |
HE L F, ROMAN P, LENG B, et al. Corrosion behavior of an alumina forming austenitic steel exposed to supercritical carbon dioxide[J]. Corrosion Science, 2014, 82: 67-76. doi: 10.1016/j.corsci.2013.12.023
|
[10] |
SHI H, JIANU A, WEISENBURGER A, et al. Corrosion resistance and microstructural stability of austenitic Fe-Cr-Al-Ni model alloys exposed to oxygen-containing molten lead[J]. Journal of Nuclear Materials, 2019, 524: 177-190. doi: 10.1016/j.jnucmat.2019.06.043
|
[11] |
GIGGINS C S, PETTI F S. Oxidation of Ni-Cr-Al alloys between 1000℃ and 1200℃[J]. Journal of the Electrochemical Society, 1971, 118(11): 1782-1790. doi: 10.1149/1.2407837
|
[12] |
CHEN H S, KIM S H, KIM C, et al. Corrosion behaviors of four stainless steels with similar chromium content in supercritical carbon dioxide environment at 650℃[J]. Corrosion Science, 2019, 156: 16-31. doi: 10.1016/j.corsci.2019.04.043
|
[13] |
CAO G, FIROUZDOR V, SRIDHARAN K, et al. Corrosion of austenitic alloys in high temperature supercritical carbon dioxide[J]. Corrosion Science, 2012, 60: 246-255. doi: 10.1016/j.corsci.2012.03.029
|
[14] |
BRADY M P, KEISER J R, MORE K L, et al. Comparison of short-term oxidation behavior of model and commercial chromia-forming ferritic stainless steels in dry and wet air[J]. Oxidation of Metals, 2012, 78(1-2): 1-16. doi: 10.1007/s11085-012-9289-3
|