Citation: | Zhang Zekai, Zhang Tingting, Yin Shasha, Yin Junlian, Wang Dezhong. Numerical Simulation of Gas-liquid Two-phase Separation in Vortex Separator[J]. Nuclear Power Engineering, 2022, 43(6): 201-208. doi: 10.13832/j.jnpe.2022.06.0201 |
[1] |
韩梦媛. 常用气液分离技术简介[J]. 科技致富向导,2014(12): 262. doi: 10.3969/j.issn.1007-1547.2014.12.264
|
[2] |
张娜娜,阎昌琪,孙立成,等. 熔盐堆除气系统中气泡分离器运行特性[J]. 核动力工程,2014, 35(2): 137-140.
|
[3] |
李华,尹俊连,张宁,等. 不同背压下旋流式气液分离器工作特性[J]. 核技术,2015, 38(1): 010603. doi: 10.11889/j.0253-3219.2015.hjs.38.010603
|
[4] |
ZHAO L X, JIANG M H, XU B R, et al. Development of a new type high-efficient inner-cone hydrocyclone[J]. Chemical Engineering Research and Design, 2012, 90(12): 2129-2134. doi: 10.1016/j.cherd.2012.05.013
|
[5] |
卜珺珺,曹军,杨晓林. 载人航天器气液分离技术综述[J]. 航天器工程,2014, 23(2): 124-131. doi: 10.3969/j.issn.1673-8748.2014.02.020
|
[6] |
ROMERO J, SAMPAIO R. A numerical model for prediction of the air-core shape of hydrocyclone flow[J]. Mechanics Research Communications, 1999, 26(3): 379-384. doi: 10.1016/S0093-6413(99)00037-3
|
[7] |
DATTA A, SOM S K. Numerical prediction of air core diameter, coefficient of discharge and spray cone angle of a swirl spray pressure nozzle[J]. International Journal of Heat and Fluid Flow, 2000, 21(4): 412-419. doi: 10.1016/S0142-727X(00)00003-5
|
[8] |
ESCUE A, CUI J. Comparison of turbulence models in simulating swirling pipe flows[J]. Applied Mathematical Modelling, 2010, 34(10): 2840-2849. doi: 10.1016/j.apm.2009.12.018
|
[9] |
曹寅. 涡流二极管的设计优化与实验研究[D]. 上海: 中国科学院大学(中国科学院上海应用物理研究所), 2015.
|
[10] |
KULKARNI A A, RANADE V V, RAJEEV R, et al. Pressure drop across vortex diodes: experiments and design guidelines[J]. Chemical Engineering Science, 2009, 64(6): 1285-1292. doi: 10.1016/j.ces.2008.10.060
|
[11] |
钱雅兰,杨灵芳,张婷婷,等. 新型旋叶分离器分离特性与机理研究[J]. 核动力工程,2021, 42(2): 29-34. doi: 10.13832/j.jnpe.2021.02.0029
|