Citation: | Guo Yanhui, Sun Zaozhan, Sun Haitao, Xu Chaoliang, Liu Xiangbing, Tao Jun. Construction and Analysis of Irradiation Damage Prediction Model for Autonomous Reactor Pressure Vessel[J]. Nuclear Power Engineering, 2022, 43(S1): 55-59. doi: 10.13832/j.jnpe.2022.S1.0055 |
[1] |
MATHEW J, PARFITT D, WILFORD K, et al. Reactor pressure vessel embrittlement: insights from neural network modelling[J]. Journal of Nuclear Materials, 2018, 502: 311-322. doi: 10.1016/j.jnucmat.2018.02.027
|
[2] |
ODETTE G R, LUCAS G E. Embrittlement of nuclear reactor pressure vessels[J]. JOM, 2001, 53(7): 18-22. doi: 10.1007/s11837-001-0081-0
|
[3] |
乔建生,尹世忠,杨文. 反应堆压力容器材料辐照脆化预测模型研究[J]. 核科学与工程,2012, 32(2): 143-149. doi: 10.3969/j.issn.0258-0918.2012.02.008
|
[4] |
王荣山,徐超亮,黄平,等. 反应堆压力容器钢的辐照脆化预测模型研究[J]. 原子能科学技术,2014, 48(10): 1862-1866. doi: 10.7538/yzk.2014.48.10.1862
|
[5] |
CASTIN N, MALERBA L, CHAOUADI R. Prediction of radiation induced hardening of reactor pressure vessel steels using artificial neural networks[J]. Journal of Nuclear Materials, 2011, 408(1): 30-39. doi: 10.1016/j.jnucmat.2010.10.039
|
[6] |
HIRANO T, ASADA S, YAMASHITA N, et al. ASME 2009 pressure vessels and piping conference - Prague, Czech Republic (July 26-30, 2009) volume 1: codes and standards - overview of the revised JEAC4201-2007, Japanese code of surveillance tests for reactor vessel materials[J]. 2009: 387-394.
|
[7] |
American Society of Testing Materials. Standard guide for predicting radiation-induced transition temperature shift in reactor vessel materials, E706 (IIF): E900-2002[S]. West Conshohocken: ASTM, 2002.
|
[8] |
KIRK M. A Wide-range embrittlement trend curve for Western RPV steels[J].ASTM Special Technical Publication 1547. 2012:20-51.
|
[9] |
STOLLER R E. Pressure vessel embrittlement predictions based on a composite model of copper precipitation and point defect clustering: CONF-940657-[R]. Washington: Nuclear Regulatory Commission, 1996: 25-28.
|