Advance Search
Volume 43 Issue S1
Jul.  2022
Turn off MathJax
Article Contents
Han Chao, Liu Guixiang, Shao Xiaolin, Liu Tianyan, Xu Deshui, Zhang Kun, Liu Xueguang. Research on Nonlinearity Weakening Method of Quasi-zero-stiffness Vibration Isolator[J]. Nuclear Power Engineering, 2022, 43(S1): 121-126. doi: 10.13832/j.jnpe.2022.S1.0121
Citation: Han Chao, Liu Guixiang, Shao Xiaolin, Liu Tianyan, Xu Deshui, Zhang Kun, Liu Xueguang. Research on Nonlinearity Weakening Method of Quasi-zero-stiffness Vibration Isolator[J]. Nuclear Power Engineering, 2022, 43(S1): 121-126. doi: 10.13832/j.jnpe.2022.S1.0121

Research on Nonlinearity Weakening Method of Quasi-zero-stiffness Vibration Isolator

doi: 10.13832/j.jnpe.2022.S1.0121
  • Received Date: 2022-01-18
  • Rev Recd Date: 2022-03-07
  • Publish Date: 2022-06-15
  • In order to weaken the nonlinear characteristics of the quasi-zero-stiffness vibration isolator, a nonlinearity weakening method of quasi-zero-stiffness vibration isolator using softening negative stiffness to neutralize hardening negative stiffness is proposed. By adjusting the design parameters, the nonlinear terms of the two negative stiffness cancel each other out, and the system only retains the linear stiffness characteristics. The feasibility of this method is verified by the cases of permanent magnet negative stiffness and three-spring negative stiffness. The results show that the nonlinear stiffness of the quasi-zero-stiffness vibration isolation system designed by this method is greatly weakened and the vibration isolation performance of the system is enhanced.

     

  • loading
  • [1]
    刘天彦,李朋洲,张鲲,等. 管道系统金属橡胶支吊架性能实验研究[J]. 核动力工程,2019, 40(S1): 129-132.
    [2]
    徐庆善. 隔振技术的进展与动态[J]. 机械强度,1994, 16(1): 37-42.
    [3]
    张鲲,席文兵,李朋洲,等. 叶片泵线谱振动有源控制[J]. 核动力工程,2016, 37(S2): 99-102.
    [4]
    CARRELLA A, BRENNAN M J, WATERS T P, et al. On the design of a high-static–low-dynamic stiffness isolator using linear mechanical springs and magnets[J]. Journal of Sound and Vibration, 2008, 315(3): 712-720. doi: 10.1016/j.jsv.2008.01.046
    [5]
    TANG B, BRENNAN M J. On the shock performance of a nonlinear vibration isolator with high-static-low-dynamic-stiffness[J]. International Journal of Mechanical Sciences, 2014, 81: 207-214. doi: 10.1016/j.ijmecsci.2014.02.019
    [6]
    ZHOU N, LIU K. A tunable high-static–low-dynamic stiffness vibration isolator[J]. Journal of Sound and Vibration, 2010, 329(9): 1254-1273. doi: 10.1016/j.jsv.2009.11.001
    [7]
    闫振华,黄玉强,李学飞,等. 基于球面滚子机构的车辆座椅非线性悬架设计[J]. 吉林大学学报:工学版,2016, 46(3): 706-710.
    [8]
    刘学广, 韩超, 范朝阳, 等. 一种具有线性负刚度特性的电磁弹簧: 中国, 201610147176.9[P]. 2018-05-18.
    [9]
    HAYASHI C. Nonlinear oscillations in physical systems[M]. New York: McGraw-Hill, 1964, 13-22.
    [10]
    NAYFEH A H, MOOK P D T. Nonlinear oscillations[M]. New York: John Wiley & Sons, 1979, 56-99.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (38) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return