Advance Search
Volume 43 Issue S2
Dec.  2022
Turn off MathJax
Article Contents
Li Yongwang, He Xueyi, Wang Xinmin, Guo Zhen, Wu Yu, Liu Haitao. Study on Thermal Deformation Behavior and Mechanism of Difficult-to-process Boron-containing Stainless Steel[J]. Nuclear Power Engineering, 2022, 43(S2): 67-73. doi: 10.13832/j.jnpe.2022.S2.0067
Citation: Li Yongwang, He Xueyi, Wang Xinmin, Guo Zhen, Wu Yu, Liu Haitao. Study on Thermal Deformation Behavior and Mechanism of Difficult-to-process Boron-containing Stainless Steel[J]. Nuclear Power Engineering, 2022, 43(S2): 67-73. doi: 10.13832/j.jnpe.2022.S2.0067

Study on Thermal Deformation Behavior and Mechanism of Difficult-to-process Boron-containing Stainless Steel

doi: 10.13832/j.jnpe.2022.S2.0067
  • Received Date: 2022-08-23
  • Rev Recd Date: 2022-10-10
  • Publish Date: 2022-12-31
  • The solid solubility of boron in steel is low, and a large number of coarse, hard and brittle eutectic borides are easily formed in the solidification process of Boron-containing stainless steel prepared by fusion casting, which leads to poor hot processibility of its billets. In order to solve this problem, using 18.5Cr-14.0Ni-2.1B stainless steel as the research material, the single-pass hot compression experiment was carried out on a thermal simulation machine, the flow stress constitutive equation was established, the hot processing map was constructed, the reasonable processing window of the stainless steel was defined, and the thermal deformation behavior and mechanism of boron-containing stainless steel were revealed. The results show that the apparent thermal deformation activation energy Q and stress exponent n of 18.5Cr-14.0Ni-2.1B stainless steel are 501.08 kJ·mol−1 and 8.13 respectively; In the process of hot compression, eutectic borides are mainly broken, rotated and induced to form a large number of micropores, most of which can be filled by the plastic flowing austenitic matrix; The larger the strain of the hot compression process is, the smaller the processing window is. When the 18.5Cr-14.0Ni-2.1B boron-containing stainless steel is deformed at 1000~1100℃ and at the rate of 0.01~1.0 s−1, it shows good processibility.

     

  • loading
  • [1]
    BENZ J M, TANNER J E, SMARTT H A, et al. Maintaining continuity of knowledge of spent fuel pools: tool survey: PNNL-SA-25663[R]. Washington: Pacific Northwest National Laboratory, 2016.
    [2]
    李刚,简敏,王美玲,等. 反应堆乏燃料贮运用中子吸收材料的研究进展[J]. 材料导报A:综述篇,2011, 25(7): 110-113,129.
    [3]
    Electric Power Research Institute. Handbook of neutron absorber materials for spent nuclear fuel transportation and storage applications 2009 edition [R]. EPRI: Palo Alto,CA: 2009.
    [4]
    YU G. Boron-containing stainless steel for thermal neutron shielding[J]. Journal of Iron and Steel Research, 1989(1): 90.
    [5]
    TSUBOTA M, OIKAWA M. Boron-bearing stainless steels for thermal neutron shielding[J]. Bulletin of the Iron and Steel Institute of Japan, 2005, 12(10): 25-32.
    [6]
    TAKEMOTO T, YAMASAKI K, KAWAI Y. Development of boron-containing stainless steel for thermal neutron shielding[J]. Materia Japan, 1996, 35(4): 412-414. doi: 10.2320/materia.35.412
    [7]
    王春刚,黄秋菊,李云,等. 硅锰系TRIP钢的变形抗力[J]. 钢铁研究学报,2008, 20(11): 51-54. doi: 10.13228/j.boyuan.issn1001-0963.2008.11.012
    [8]
    王占学. 塑性加工金属学[M]. 北京: 冶金工业出版社, 2006: 101-103.
    [9]
    GUO C Q, KELLY P M. Modeling of spatial distribution of the eutectic M2B borides in Fe-Cr-B cast irons[J]. Journal of Materials Science, 2004, 39(3): 1109-1111. doi: 10.1023/B:JMSC.0000012956.43917.c1
    [10]
    李金富,周尧和. 界面动力学对共晶生长过程的影响[J]. 中国科学E辑:工程科学材料科学,2005, 35(5): 449-458.
    [11]
    SRINIVASA N, PRASAD Y V R K. Hot working characteristics of nimonic 75, 80A and 90 superalloys: a comparison using processing maps[J]. Journal of Materials Processing Technology, 1995, 51(1-4): 171-192. doi: 10.1016/0924-0136(94)01602-W
    [12]
    ZHOU X, WANG M J, FU Y F, et al. Effect of borides on hot deformation behavior and microstructure evolution of powder metallurgy high borated stainless steel[J]. Materials Characterization, 2017, 124: 182-191. doi: 10.1016/j.matchar.2017.01.001
    [13]
    MEDINA S F, HERNANDEZ C A. Modelling of the dynamic recrystallizayion of austenite in low alloy and microalloyed steels[J]. Acta Mater, 1996, 44(1): 165-171.
    [14]
    PRASAD Y V R K. Author’s reply: dynamic materials model: basis and principles[J]. Metallurgical and Materials Transactions A, 1996, 27(1): 235-236. doi: 10.1007/BF02647765
    [15]
    PRASAD Y V R K, GEGEL H L, DORAIVELU S M, et al. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10): 1883-1892. doi: 10.1007/BF02664902
    [16]
    MISHRA S, NARASIMHAN K, SAMAJDAR I. Deformation twinning in AISI 316L austenitic stainless steel: role of strain and strain path[J]. Materials Science and Technology, 2007, 23(9): 1118-1126. doi: 10.1179/174328407X213242
    [17]
    CABRERA E S P. High temperature deformation of 316L stainless steel[J]. Materials Science and Technology, 2001, 17(2): 155-161. doi: 10.1179/026708301101509944
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (171) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return