Citation: | Wen Shuang, Zeng Xiehu, Wen Qinglong, Ruan Shenhui, Zhang Ruiqian, Wei Tianguo, Yang Hongyan. Numerical Study on Typical Cell of Fuel Assembly by Turbulence Excitation[J]. Nuclear Power Engineering, 2023, 44(1): 9-16. doi: 10.13832/j.jnpe.2023.01.0009 |
[1] |
INTERNATIONAL ATOMIC ENERGY AGENCY. Review of Fuel Failures in Water Cooled Reactors: IAEA Nuclear Energy Series: No. NF-T-2.1[R]. Vienna, Austria: IAEA, 2010.
|
[2] |
HU Z P. Developments of analyses on grid-to-rod fretting problems in pressurized water reactors[J]. Progress in Nuclear Energy, 2018, 106: 293-299. doi: 10.1016/j.pnucene.2018.03.015
|
[3] |
RUBIOLO P R. Probabilistic prediction of fretting-wear damage of nuclear fuel rods[J]. Nuclear Engineering and Design, 2006, 236(14-16): 1628-1640. doi: 10.1016/j.nucengdes.2006.04.023
|
[4] |
RUBIOLO P R, YOUNG M Y. On the factors affecting the fretting-wear risk of PWR fuel assemblies[J]. Nuclear Engineering and Design, 2009, 239(1): 68-79. doi: 10.1016/j.nucengdes.2008.08.021
|
[5] |
YAN J, YUAN K, TATLI E, et al. A new method to predict grid-to-rod fretting in a PWR fuel assembly inlet region[J]. Nuclear Engineering and Design, 2011, 241(8): 2974-2982. doi: 10.1016/j.nucengdes.2011.06.019
|
[6] |
LIU H D, CHEN D Q, HU L, et al. Numerical investigations on flow-induced vibration of fuel rods with spacer grids subjected to turbulent flow[J]. Nuclear Engineering and Design, 2017, 325: 68-77. doi: 10.1016/j.nucengdes.2017.10.004
|
[7] |
BAKOSI J, CHRISTON M A, LOWRIE R B, et al. Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors[J]. Nuclear Engineering and Design, 2013, 262: 544-561. doi: 10.1016/j.nucengdes.2013.06.007
|
[8] |
CHRISTON M A, LU R, BAKOSI J, et al. Large-eddy simulation, fuel rod vibration and grid-to-rod fretting in pressurized water reactors[J]. Journal of Computational Physics, 2016, 322: 142-161. doi: 10.1016/j.jcp.2016.06.042
|
[9] |
KENNEDY J C, SOLBREKKEN G L. Coupled Fluid Structure Interaction (FSI) modeling of parallel plate assemblies[C]//ASME 2011 International Mechanical Engineering Congress and Exposition. Denver: ASME, 2011, 54907: 159-167.
|
[10] |
WANG M J, WANG Y J, TIAN W X, et al. Recent progress of CFD applications in PWR thermal hydraulics study and future directions[J]. Annals of Nuclear Energy, 2021, 150: 107836. doi: 10.1016/j.anucene.2020.107836
|
[11] |
齐欢欢,冯志鹏,姜乃斌,等. 格架松弛对燃料棒湍流激励及微振磨损的影响研究[J]. 原子能科学技术,2018, 52(10): 1810-1816. doi: 10.7538/yzk.2018.youxian.0066
|
[12] |
敖翔. 非均匀来流下螺旋桨的流固耦合特性分析[D]. 哈尔滨: 哈尔滨工业大学, 2021.
|
[13] |
刘海东. 复杂结构燃料元件的流致振动特性数值研究[D]. 重庆: 重庆大学, 2018.
|
[14] |
CIONCOLINI A, SILVA-LEON J, COOPER D, et al. Axial-flow-induced vibration experiments on cantilevered rods for nuclear reactor applications[J]. Nuclear Engineering and Design, 2018, 338: 102-118. doi: 10.1016/j.nucengdes.2018.08.010
|
[15] |
CHOI M H, KANG H S, YOON K H, et al. Vibration analysis of a dummy fuel rod continuously supported by spacer grids[J]. Nuclear Engineering and Design, 2004, 232(2): 185-196. doi: 10.1016/j.nucengdes.2003.11.007
|
[16] |
FERRARI G, BALASUBRAMANIAN P, LE GUISQUET S, et al. Non-linear vibrations of nuclear fuel rods[J]. Nuclear Engineering and Design, 2018, 338: 269-283. doi: 10.1016/j.nucengdes.2018.08.013
|