Advance Search
Volume 44 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Wen Shuang, Zeng Xiehu, Wen Qinglong, Ruan Shenhui, Zhang Ruiqian, Wei Tianguo, Yang Hongyan. Numerical Study on Typical Cell of Fuel Assembly by Turbulence Excitation[J]. Nuclear Power Engineering, 2023, 44(1): 9-16. doi: 10.13832/j.jnpe.2023.01.0009
Citation: Wen Shuang, Zeng Xiehu, Wen Qinglong, Ruan Shenhui, Zhang Ruiqian, Wei Tianguo, Yang Hongyan. Numerical Study on Typical Cell of Fuel Assembly by Turbulence Excitation[J]. Nuclear Power Engineering, 2023, 44(1): 9-16. doi: 10.13832/j.jnpe.2023.01.0009

Numerical Study on Typical Cell of Fuel Assembly by Turbulence Excitation

doi: 10.13832/j.jnpe.2023.01.0009
  • Received Date: 2022-04-11
  • Rev Recd Date: 2022-11-23
  • Publish Date: 2023-02-15
  • In order to master the vibration response characteristics of fuel rods in the full length range for fretting wear life analysis of fuel rods, this study is to use the computational fluid dynamics (CFD) method to numerically simulate the turbulence excitation of typical lattice of fuel assembly, and to carry out the transient dynamic analysis of a single rod under different clamping forces through the transient fluctuating pressure distribution on the surface of fuel rod. The results show that: the average turbulent kinetic energy of the upstream section of the grid is about 0.1 m2/s2, and the turbulent kinetic energy peaks at 0.65 m2/s2 near the grid outlet. Therefore, the existence of grid significantly enhances the turbulence intensity of the flow field, which is the main reason for the turbulence excitation of the fuel rod; the position of the spacer grid with the maximum root mean square amplitude is determined by transient dynamic analysis, and the correlation between the root mean square amplitude and vibration velocity of the grid with the clamping force is established. This study will lay a foundation for the following theoretical calculation and experimental verification of fretting wear.

     

  • loading
  • [1]
    INTERNATIONAL ATOMIC ENERGY AGENCY. Review of Fuel Failures in Water Cooled Reactors: IAEA Nuclear Energy Series: No. NF-T-2.1[R]. Vienna, Austria: IAEA, 2010.
    [2]
    HU Z P. Developments of analyses on grid-to-rod fretting problems in pressurized water reactors[J]. Progress in Nuclear Energy, 2018, 106: 293-299. doi: 10.1016/j.pnucene.2018.03.015
    [3]
    RUBIOLO P R. Probabilistic prediction of fretting-wear damage of nuclear fuel rods[J]. Nuclear Engineering and Design, 2006, 236(14-16): 1628-1640. doi: 10.1016/j.nucengdes.2006.04.023
    [4]
    RUBIOLO P R, YOUNG M Y. On the factors affecting the fretting-wear risk of PWR fuel assemblies[J]. Nuclear Engineering and Design, 2009, 239(1): 68-79. doi: 10.1016/j.nucengdes.2008.08.021
    [5]
    YAN J, YUAN K, TATLI E, et al. A new method to predict grid-to-rod fretting in a PWR fuel assembly inlet region[J]. Nuclear Engineering and Design, 2011, 241(8): 2974-2982. doi: 10.1016/j.nucengdes.2011.06.019
    [6]
    LIU H D, CHEN D Q, HU L, et al. Numerical investigations on flow-induced vibration of fuel rods with spacer grids subjected to turbulent flow[J]. Nuclear Engineering and Design, 2017, 325: 68-77. doi: 10.1016/j.nucengdes.2017.10.004
    [7]
    BAKOSI J, CHRISTON M A, LOWRIE R B, et al. Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors[J]. Nuclear Engineering and Design, 2013, 262: 544-561. doi: 10.1016/j.nucengdes.2013.06.007
    [8]
    CHRISTON M A, LU R, BAKOSI J, et al. Large-eddy simulation, fuel rod vibration and grid-to-rod fretting in pressurized water reactors[J]. Journal of Computational Physics, 2016, 322: 142-161. doi: 10.1016/j.jcp.2016.06.042
    [9]
    KENNEDY J C, SOLBREKKEN G L. Coupled Fluid Structure Interaction (FSI) modeling of parallel plate assemblies[C]//ASME 2011 International Mechanical Engineering Congress and Exposition. Denver: ASME, 2011, 54907: 159-167.
    [10]
    WANG M J, WANG Y J, TIAN W X, et al. Recent progress of CFD applications in PWR thermal hydraulics study and future directions[J]. Annals of Nuclear Energy, 2021, 150: 107836. doi: 10.1016/j.anucene.2020.107836
    [11]
    齐欢欢,冯志鹏,姜乃斌,等. 格架松弛对燃料棒湍流激励及微振磨损的影响研究[J]. 原子能科学技术,2018, 52(10): 1810-1816. doi: 10.7538/yzk.2018.youxian.0066
    [12]
    敖翔. 非均匀来流下螺旋桨的流固耦合特性分析[D]. 哈尔滨: 哈尔滨工业大学, 2021.
    [13]
    刘海东. 复杂结构燃料元件的流致振动特性数值研究[D]. 重庆: 重庆大学, 2018.
    [14]
    CIONCOLINI A, SILVA-LEON J, COOPER D, et al. Axial-flow-induced vibration experiments on cantilevered rods for nuclear reactor applications[J]. Nuclear Engineering and Design, 2018, 338: 102-118. doi: 10.1016/j.nucengdes.2018.08.010
    [15]
    CHOI M H, KANG H S, YOON K H, et al. Vibration analysis of a dummy fuel rod continuously supported by spacer grids[J]. Nuclear Engineering and Design, 2004, 232(2): 185-196. doi: 10.1016/j.nucengdes.2003.11.007
    [16]
    FERRARI G, BALASUBRAMANIAN P, LE GUISQUET S, et al. Non-linear vibrations of nuclear fuel rods[J]. Nuclear Engineering and Design, 2018, 338: 269-283. doi: 10.1016/j.nucengdes.2018.08.013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article views (298) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return