Citation: | Zhong Lei, Chen Deqi, Yu Hongxing, Liu Hanzhou, Chen Mingjing, Deng Jian, Ding Shuhua, Wu Dan. Experimental Study on Microstructure and Wetting Properties of N36 Zirconium Alloy Oxide Layer[J]. Nuclear Power Engineering, 2023, 44(1): 37-44. doi: 10.13832/j.jnpe.2023.01.0037 |
[1] |
高巍,张娴,王正品,等. M5和Zirlo合金高温水蒸气氧化行为研究[J]. 西安工业大学学报,2016, 36(6): 473-480. doi: 10.16185/j.jxatu.edu.cn.2016.06.008
|
[2] |
卓洪,邱绍宇,赵文金,等. 军民结合助推N36锆合金实现工程化应用[J]. 中国军转民,2019(4): 73-76. doi: 10.3969/j.issn.1008-5874.2019.04.025
|
[3] |
SUN C, YANG Z B, WU Z P. Study on corrosion resistance of N36 zirconium alloy in LiOH aqueous solution[J]. World Journal of Nuclear Science and Technology, 2018, 8(2): 30-37. doi: 10.4236/wjnst.2018.82004
|
[4] |
苗一非,焦拥军,张坤,等. N36锆合金包壳堆内腐蚀模型研究[J]. 原子能科学技术,2018, 52(2): 290-294.
|
[5] |
程竹青,沈剑韵,陈波全,等. N36锆合金相图计算初步研究[J]. 核动力工程,2020, 41(S1): 147-152.
|
[6] |
惠泊宁,渠静雯,李帆,等. 表层渗碳对N36锆合金管坯耐腐蚀性能的影响[J]. 有色金属加工,2019, 48(4): 11-13,57. doi: 10.3969/j.issn.1671-6795.2019.04.004
|
[7] |
苗一非,焦拥军,张坤,等. N36锆合金包壳辐照生长经验模型研究[J]. 原子能科学技术,2019, 53(2): 277-281. doi: 10.7538/yzk.2018.youxian.0303
|
[8] |
PAWEL R E, CATHCART J V, CAMPBELL J J, et al. Zirconium metal-water oxidation kinetics. V. Oxidation of Zircaloy in high pressure steam. [PWR]: ORNL/NUREG-31[R]. Tenn: Oak Ridge National Lab., 1977.
|
[9] |
李冬,许巍,刘晓晶,等. RELAP5程序基于敏感性分析的再淹没模型改进[J]. 核动力工程,2015, 36(S2): 151-156.
|
[10] |
KANDLIKAR S G. A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation[J]. Journal of Heat Transfer, 2001, 123(6): 1071-1079. doi: 10.1115/1.1409265
|
[11] |
CHEN M J, WU D, CHEN D Q, et al. Experimental investigation on the movement of triple-phase contact line during a droplet impacting on horizontal and inclined surface[J]. Chemical Engineering Science, 2020, 226: 115864. doi: 10.1016/j.ces.2020.115864
|
[12] |
MAKI H. Heat transfer characteristics of zircaloy-2 oxide film[J]. Journal of Nuclear Science and Technology, 1973, 10(3): 170-175. doi: 10.1080/18811248.1973.9735399
|
[13] |
GÖHR H, SCHALLER J, SCHILLER C A. Impedance studies of the oxide layer on zircaloy after previous oxidation in water vapour at 400℃[J]. Electrochimica Acta, 1993, 38(14): 1961-1964. doi: 10.1016/0013-4686(93)80323-R
|
[14] |
URBANIC V F, HEIDRICK T R. High-temperature oxidation of zircaloy-2 and zircaloy-4 in steam[J]. Journal of Nuclear Materials, 1978, 75(2): 251-261. doi: 10.1016/0022-3115(78)90006-5
|
[15] |
NAGASE F, OTOMO T, UETSUKA H. oxidation kinetics of low-Sn zircaloy-4 at the temperature range from 773 to 1, 573 K[J]. Journal of Nuclear Science and Technology, 2003, 40(4): 213-219. doi: 10.1080/18811248.2003.9715351
|
[16] |
LEISTIKOW S, SCHANZ G. Oxidation kinetics and related phenomena of zircaloy-4 fuel cladding exposed to high temperature steam and hydrogen-steam mixtures under PWR accident conditions[J]. Nuclear Engineering and Design, 1987, 103(1): 65-84. doi: 10.1016/0029-5493(87)90286-X
|
[17] |
张喜燕. 熔化情况下Zr-4合金包壳管氧化膜厚度变化的计算[J]. 核动力工程,1991, 12(2): 83-87.
|
[18] |
YEOM H, JO H, JOHNSON G, et al. Transient pool boiling heat transfer of oxidized and roughened Zircaloy-4 surfaces during water quenching[J]. International Journal of Heat and Mass Transfer, 2018, 120: 435-446. doi: 10.1016/j.ijheatmasstransfer.2017.12.060
|
[19] |
KANG J Y, KIM T K, LEE G C, et al. Quenching of candidate materials for accident tolerant fuel-cladding in LWRs[J]. Annals of Nuclear Energy, 2018, 112: 794-807. doi: 10.1016/j.anucene.2017.11.007
|
[20] |
MASSIH A R. Review of experimental data for modelling LWR fuel cladding behaviour under loss of coolant accident conditions: SKI-R-07-14[R]. Stockholm: Swedish Nuclear Power Inspectorate, 2007.
|
[21] |
安欣林,王晓莉. 纳米二氧化锆研究进展−Ⅰ性质[J]. 内蒙古石油化工,2007(5): 28-30. doi: 10.3969/j.issn.1006-7981.2007.05.012
|