Citation: | Yu Qingyuan, Zhao Pengcheng, Ma Yugao, Zhang Yingnan. Study on Resistance Characteristics of Capillary Flow in Screen Wick Based on CFD Method[J]. Nuclear Power Engineering, 2023, 44(1): 54-59. doi: 10.13832/j.jnpe.2023.01.0054 |
[1] |
FAGHRI A. Review and advances in heat pipe science and technology[J]. Journal of Heat Transfer, 2012, 134(12): 123001. doi: 10.1115/1.4007407
|
[2] |
余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019, 40(4): 1-8. doi: 10.13832/j.jnpe.2019.04.0001
|
[3] |
WANG C L, TANG S M, LIU X, et al. Experimental study on heat pipe thermoelectric generator for industrial high temperature waste heat recovery[J]. Applied Thermal Engineering, 2020, 175: 115299. doi: 10.1016/j.applthermaleng.2020.115299
|
[4] |
CHAUDHRY H N, HUGHES B R, GHANI S A. A review of heat pipe systems for heat recovery and renewable energy applications[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 2249-2259. doi: 10.1016/j.rser.2012.01.038
|
[5] |
CHOI J, SANO W, ZHANG W J, et al. Experimental investigation on sintered porous wicks for miniature loop heat pipe applications[J]. Experimental Thermal and Fluid Science, 2013, 51: 271-278. doi: 10.1016/j.expthermflusci.2013.08.009
|
[6] |
马同泽,汪肇平,赵嘉琪. 热管网状毛细芯毛细力及渗透率研究[J]. 工程热物理学报,1980, 1(2): 156-164.
|
[7] |
RYBKIN B I, SERGEEV Y Y, SIDORENKO E M, et al. Investigation of the coolant edge wetting angle for mesh heat pipe wicks[J]. Journal of Engineering Physics, 1979, 36(4): 408-413. doi: 10.1007/BF00866962
|
[8] |
CANTI G, CELATA G P, CUMO M, et al. Thermal hydraulic characterization of stainless steel wicks for heat pipe applications[J]. Revue Générale de Thermique, 1998, 37(1): 5-16.
|
[9] |
TANG Y, DENG D X, LU L S, et al. Experimental investigation on capillary force of composite wick structure by IR thermal imaging camera[J]. Experimental Thermal and Fluid Science, 2010, 34(2): 190-196. doi: 10.1016/j.expthermflusci.2009.10.016
|
[10] |
CHAMARTHY P, DE BOCK H P J, RUSS B, et al. Novel fluorescent visualization method to characterize transport properties in micro/Nano heat pipe wick structures[C]//Proceedings of the ASME 2009 InterPACK Conference Collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability. San Francisco: ASME, 2009: 419-425.
|
[11] |
LI J W, ZOU Y, CHENG L. Experimental study on capillary pumping performance of porous wicks for loop heat pipe[J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1403-1408. doi: 10.1016/j.expthermflusci.2010.06.016
|
[12] |
ERGUN S. Fluid flow through packed columns[J]. Journal of Chemical Engineering Progress, 1952, 48(2): 89-94.
|
[13] |
PARTHASARATHY P, HABISREUTHER P, ZARZALIS N. A study of pressure drop in reticulated ceramic sponges using direct pore level simulation[J]. Chemical Engineering Science, 2016, 147: 91-99. doi: 10.1016/j.ces.2016.03.015
|
[14] |
RAMBABU S, KARTIK SRIRAM K, CHAMARTHY S, et al. A proposal for a correlation to calculate pressure drop in reticulated porous media with the help of numerical investigation of pressure drop in ideal & randomized reticulated structures[J]. Chemical Engineering Science, 2021, 237: 116518. doi: 10.1016/j.ces.2021.116518
|
[15] |
LI G Y, HUANG Y Y, HAN W, et al. Pressure drop prediction with an analytical structure-property model for fluid through porous media[J]. Fractals, 2021, 29(7): 2150184. doi: 10.1142/S0218348X2150184X
|
[16] |
IMURA H, KOZAI H, IKEDA Y. The effective pore radius of screen wicks[J]. Heat Transfer Engineering, 1994, 15(4): 24-32. doi: 10.1080/01457639408939834
|
[17] |
周常新, 范利颋, 袁希钢, 等. 乙醇及正丙醇水溶液与金属表面接触角测量[C]//中国化工学会. 第二届全国塔器及塔内件技术研讨会会议论文集. 北京: 化学工业出版社, 2007: 75-80.
|
[18] |
ZHANG J, LIAN L X, LIU Y, et al. The heat transfer capability prediction of heat pipes based on capillary rise test of wicks[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120536. doi: 10.1016/j.ijheatmasstransfer.2020.120536
|
[19] |
SHIRAZY M R S, FRÉCHETTE L G. Capillary and wetting properties of copper metal foams in the presence of evaporation and sintered walls[J]. International Journal of Heat and Mass Transfer, 2013, 58(1-2): 282-291. doi: 10.1016/j.ijheatmasstransfer.2012.11.031
|