Advance Search
Volume 44 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Yu Qingyuan, Zhao Pengcheng, Ma Yugao, Zhang Yingnan. Study on Resistance Characteristics of Capillary Flow in Screen Wick Based on CFD Method[J]. Nuclear Power Engineering, 2023, 44(1): 54-59. doi: 10.13832/j.jnpe.2023.01.0054
Citation: Yu Qingyuan, Zhao Pengcheng, Ma Yugao, Zhang Yingnan. Study on Resistance Characteristics of Capillary Flow in Screen Wick Based on CFD Method[J]. Nuclear Power Engineering, 2023, 44(1): 54-59. doi: 10.13832/j.jnpe.2023.01.0054

Study on Resistance Characteristics of Capillary Flow in Screen Wick Based on CFD Method

doi: 10.13832/j.jnpe.2023.01.0054
  • Received Date: 2022-02-15
  • Rev Recd Date: 2022-04-10
  • Publish Date: 2023-02-15
  • Screen wick heat pipe is a kind of passive heat transfer equipment based on the principle of two-phase flow phase change cycle. The capillary force and flow resistance in the cycle are closely related to the structure of the screen wick. The study of the resistance characteristics of the screen wick is of great significance to the selection and optimization of the screen wick structure and the improvement of the heat pipe performance. Based on computational fluid dynamics (CFD), a resistance model of capillary flow in screen is established to study the resistance characteristics of capillary flow in multi-layer wire screen wick. The model is used to simulate the capillary lifting experiment, and the relative error between the model and the experimental results is less than 5%. Based on the model, the effects of stacking structure and mesh number (50 mesh, 200 mesh, 400 mesh) on the flow resistance characteristics of screen wick are further analyzed. The results show that the denser the mesh is, the greater the flow resistance is, the viscous resistance coefficient is approximately proportional to the mesh number, and the equivalent inertia resistance increases with the increase of the mesh number. In the low velocity region where Reynolds number is less than 1, viscous resistance plays a dominant role, while in the velocity region where Reynolds number is greater than 1, inertia resistance cannot be ignored; The geometric structure of the screen wick not only affects the flow resistance, but also affects the capillary force. The calculation shows that the capillary pressure and flow resistance of the screen increase with the increase of mesh number, and the capillary performance factor slows down with the increase of mesh number. Considering the process limitation of plain woven screen, 400 mesh screen is ideal.

     

  • loading
  • [1]
    FAGHRI A. Review and advances in heat pipe science and technology[J]. Journal of Heat Transfer, 2012, 134(12): 123001. doi: 10.1115/1.4007407
    [2]
    余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019, 40(4): 1-8. doi: 10.13832/j.jnpe.2019.04.0001
    [3]
    WANG C L, TANG S M, LIU X, et al. Experimental study on heat pipe thermoelectric generator for industrial high temperature waste heat recovery[J]. Applied Thermal Engineering, 2020, 175: 115299. doi: 10.1016/j.applthermaleng.2020.115299
    [4]
    CHAUDHRY H N, HUGHES B R, GHANI S A. A review of heat pipe systems for heat recovery and renewable energy applications[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 2249-2259. doi: 10.1016/j.rser.2012.01.038
    [5]
    CHOI J, SANO W, ZHANG W J, et al. Experimental investigation on sintered porous wicks for miniature loop heat pipe applications[J]. Experimental Thermal and Fluid Science, 2013, 51: 271-278. doi: 10.1016/j.expthermflusci.2013.08.009
    [6]
    马同泽,汪肇平,赵嘉琪. 热管网状毛细芯毛细力及渗透率研究[J]. 工程热物理学报,1980, 1(2): 156-164.
    [7]
    RYBKIN B I, SERGEEV Y Y, SIDORENKO E M, et al. Investigation of the coolant edge wetting angle for mesh heat pipe wicks[J]. Journal of Engineering Physics, 1979, 36(4): 408-413. doi: 10.1007/BF00866962
    [8]
    CANTI G, CELATA G P, CUMO M, et al. Thermal hydraulic characterization of stainless steel wicks for heat pipe applications[J]. Revue Générale de Thermique, 1998, 37(1): 5-16.
    [9]
    TANG Y, DENG D X, LU L S, et al. Experimental investigation on capillary force of composite wick structure by IR thermal imaging camera[J]. Experimental Thermal and Fluid Science, 2010, 34(2): 190-196. doi: 10.1016/j.expthermflusci.2009.10.016
    [10]
    CHAMARTHY P, DE BOCK H P J, RUSS B, et al. Novel fluorescent visualization method to characterize transport properties in micro/Nano heat pipe wick structures[C]//Proceedings of the ASME 2009 InterPACK Conference Collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability. San Francisco: ASME, 2009: 419-425.
    [11]
    LI J W, ZOU Y, CHENG L. Experimental study on capillary pumping performance of porous wicks for loop heat pipe[J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1403-1408. doi: 10.1016/j.expthermflusci.2010.06.016
    [12]
    ERGUN S. Fluid flow through packed columns[J]. Journal of Chemical Engineering Progress, 1952, 48(2): 89-94.
    [13]
    PARTHASARATHY P, HABISREUTHER P, ZARZALIS N. A study of pressure drop in reticulated ceramic sponges using direct pore level simulation[J]. Chemical Engineering Science, 2016, 147: 91-99. doi: 10.1016/j.ces.2016.03.015
    [14]
    RAMBABU S, KARTIK SRIRAM K, CHAMARTHY S, et al. A proposal for a correlation to calculate pressure drop in reticulated porous media with the help of numerical investigation of pressure drop in ideal & randomized reticulated structures[J]. Chemical Engineering Science, 2021, 237: 116518. doi: 10.1016/j.ces.2021.116518
    [15]
    LI G Y, HUANG Y Y, HAN W, et al. Pressure drop prediction with an analytical structure-property model for fluid through porous media[J]. Fractals, 2021, 29(7): 2150184. doi: 10.1142/S0218348X2150184X
    [16]
    IMURA H, KOZAI H, IKEDA Y. The effective pore radius of screen wicks[J]. Heat Transfer Engineering, 1994, 15(4): 24-32. doi: 10.1080/01457639408939834
    [17]
    周常新, 范利颋, 袁希钢, 等. 乙醇及正丙醇水溶液与金属表面接触角测量[C]//中国化工学会. 第二届全国塔器及塔内件技术研讨会会议论文集. 北京: 化学工业出版社, 2007: 75-80.
    [18]
    ZHANG J, LIAN L X, LIU Y, et al. The heat transfer capability prediction of heat pipes based on capillary rise test of wicks[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120536. doi: 10.1016/j.ijheatmasstransfer.2020.120536
    [19]
    SHIRAZY M R S, FRÉCHETTE L G. Capillary and wetting properties of copper metal foams in the presence of evaporation and sintered walls[J]. International Journal of Heat and Mass Transfer, 2013, 58(1-2): 282-291. doi: 10.1016/j.ijheatmasstransfer.2012.11.031
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (313) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return