Advance Search
Volume 44 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Xu Bo, Zhao Long, Deng Junkai, Li Yang, Guo Kerong, Gong Houjun. Ab Initio Molecular Dynamics Calculation of Diffusion Coefficients of Molten Materials[J]. Nuclear Power Engineering, 2023, 44(1): 73-78. doi: 10.13832/j.jnpe.2023.01.0073
Citation: Xu Bo, Zhao Long, Deng Junkai, Li Yang, Guo Kerong, Gong Houjun. Ab Initio Molecular Dynamics Calculation of Diffusion Coefficients of Molten Materials[J]. Nuclear Power Engineering, 2023, 44(1): 73-78. doi: 10.13832/j.jnpe.2023.01.0073

Ab Initio Molecular Dynamics Calculation of Diffusion Coefficients of Molten Materials

doi: 10.13832/j.jnpe.2023.01.0073
  • Received Date: 2022-03-29
  • Rev Recd Date: 2022-07-28
  • Publish Date: 2023-02-15
  • In order to understand the evolution of the microstructure of the molten materials in the lower chamber of the reactor pressure vessel (RPV) of the nuclear reactor at the later stage of a severe accident, it is necessary to investigate the physical properties of the molten material. The atomic diffusion behavior of molten materials in high temperature liquid is simulated by ab initio molecular dynamics based on the first principles, with the actual materials in the melting process in the melting pool, including fuel pellet UO2, U-Zr-O materials after melting cladding tubes and U-Fe-O materials after melting stainless steel components as the research objects. The results show that the atomic diffusion coefficients of U, Zr, Fe, O in the high temperature liquid phase are negatively related to the atomic mass, and are less affected by the components at the same temperature, maintaining a relatively stable proportional relationship. The difference of different atomic diffusion coefficients will theoretically lead to the formation of layered structure in the melting pool. Therefore, the diffusion coefficients of various atoms in the above three materials at high temperature can be compared, and the direct quantitative relationship can be determined, which lays a foundation for the further study of the microstructure evolution of molten materials at large scale.

     

  • loading
  • [1]
    ESMAILI H, KHATIB-RAHBAR M. Analysis of likelihood of lower head failure and ex-vessel fuel coolant interaction energetics for AP1000[J]. Nuclear Engineering and Design, 2005, 235(15): 1583-1605. doi: 10.1016/j.nucengdes.2005.02.003
    [2]
    傅孝良,杨燕华,周卫华,等. CPR1000的IVR有效性评价中堆芯熔化及熔池形成过程分析[J]. 核动力工程,2010, 31(5): 102-107.
    [3]
    BOTTOMLEY P D W, MURRAY-FARTHING M, MANARA D, et al. Investigations of the melting behaviour of the U-Zr-Fe-O system[J]. Journal of Nuclear Science and Technology, 2015, 52(10): 1217-1225. doi: 10.1080/00223131.2015.1023381
    [4]
    FUKASAWA M, TAMURA S, HASEBE M. Development of thermodynamic database for U-Zr-Fe-O-B-C-FPs system[J]. Journal of Nuclear Science and Technology, 2005, 42(8): 706-716. doi: 10.1080/18811248.2004.9726440
    [5]
    SKINNER L B, BENMORE C J, WEBER J K R, et al. Molten uranium dioxide structure and dynamics[J]. Science, 2014, 346(6212): 984-987. doi: 10.1126/science.1259709
    [6]
    BEIGBEDER T, BOURASSEAU E, RUSHTON M. Thermophysical properties of liquid (U, Zr)O2 by molecular dynamics[J]. Molecular Simulation, 2021, 47(18): 1502-1508. doi: 10.1080/08927022.2021.1987429
    [7]
    HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B): B864-B871. doi: 10.1103/PhysRev.136.B864
    [8]
    KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): A1133-A1138. doi: 10.1103/PhysRev.140.A1133
    [9]
    KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals[J]. Physical Review B, 1993, 47(1): 558-561. doi: 10.1103/PhysRevB.47.558
    [10]
    KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. doi: 10.1016/0927-0256(96)00008-0
    [11]
    NOSÉ S. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 81(1): 511-519. doi: 10.1063/1.447334
    [12]
    BECKE A D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Physical Review A, 1988, 38(6): 3098-3100. doi: 10.1103/PhysRevA.38.3098
    [13]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [14]
    LANGRETH D C, MEHL M J. Beyond the local-density approximation in calculations of ground-state electronic properties[J]. Physical Review B, 1983, 28(4): 1809-1834. doi: 10.1103/PhysRevB.28.1809
    [15]
    PRIEUR D, DESAGULIER M M, NEUVILLE D R, et al. A spectroscopic hike in the U-O phase diagram[J]. Journal of Synchrotron Radiation, 2021, 28(6): 1684-1691. doi: 10.1107/S1600577521010572
    [16]
    GÜNAY S D, AKDERE Ü, TAŞSEVEN Ç. Hypernetted chain calculations of molten uranium dioxide: comparison of rigid ion potentials[J]. Journal of Molecular Liquids, 2012, 173: 124-129. doi: 10.1016/j.molliq.2012.06.028
    [17]
    FROST D G, GALVIN C O T, COOPER M W D, et al. Thermophysical properties of urania-zirconia (U, Zr)O2 mixed oxides by molecular dynamics[J]. Journal of Nuclear Materials, 2020, 528: 151876. doi: 10.1016/j.jnucmat.2019.151876
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (271) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return