Advance Search
Volume 44 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Yu Hang, Zhao Xinwen, Fu Shengwei, Zhu Kang. Study on Failure Mechanism of Pressurizer Surge Line and Manhole Structure under LOCA[J]. Nuclear Power Engineering, 2023, 44(1): 109-117. doi: 10.13832/j.jnpe.2023.01.0109
Citation: Yu Hang, Zhao Xinwen, Fu Shengwei, Zhu Kang. Study on Failure Mechanism of Pressurizer Surge Line and Manhole Structure under LOCA[J]. Nuclear Power Engineering, 2023, 44(1): 109-117. doi: 10.13832/j.jnpe.2023.01.0109

Study on Failure Mechanism of Pressurizer Surge Line and Manhole Structure under LOCA

doi: 10.13832/j.jnpe.2023.01.0109
  • Received Date: 2022-03-14
  • Rev Recd Date: 2022-10-24
  • Publish Date: 2023-02-15
  • Pressurizer is an important equipment for pressure control and protection in nuclear reactors, and the huge shock generated by loss of coolant accident (LOCA) may cause structural failure of its critical parts. The three-dimensional transient numerical simulation of pressurizer surge line’s flow heat transfer and structural stress, the temperature distribution and sealing performance of manhole structure under the small break LOCA are carried out by the multi-field coupling method, and the failure mechanism is analyzed. The results show that the hot fluid rapidly flowing into the surge line forms a huge instantaneous load, causing a short period of strong vibration of the pipe, the middle part of the pipe deformation is the largest, which may destroy the pipe support structure; The equivalent stress of each part increases rapidly, and concentrated stress occurs at the connecting pipe part of the main pipe. Large stress fluctuation will affect its service life; The manhole structure has a large uneven temperature distribution, and the sealing performance of the gasket under the sealing structure changes the most. The contact pressure of the inner and outer sealing surfaces drops below the design sealing specific pressure before and after 100 seconds, which means leakage occurs. According to the analysis results, this paper puts forward some suggestions for improving the structure of surge line and manhole, which can provide technical reference for accident mitigation after small break LOCA in marine nuclear power plant.

     

  • loading
  • [1]
    QIAO S X, GU H F, WANG H J, et al. Experimental investigation of thermal stratification in a pressurizer surge line[J]. Annals of Nuclear Energy, 2014, 73: 211-217. doi: 10.1016/j.anucene.2014.06.045
    [2]
    CAI B A, WENG Y, WANG Y Y, et al. Experimental investigation on thermal stratification in a pressurizer surge line with different arrangements[J]. Progress in Nuclear Energy, 2017, 98: 239-247. doi: 10.1016/j.pnucene.2017.03.029
    [3]
    TANG B, ZHOU Y. Numerical investigation on turbulent penetration and thermal stratification for the in-surge case of the AP1000 pressurizer surge line[J]. Nuclear Engineering and Design, 2021, 378: 111176. doi: 10.1016/j.nucengdes.2021.111176
    [4]
    WANG M J, FENG T T, FANG D, et al. Numerical study on the thermal stratification characteristics of AP1000 pressurizer surge line[J]. Annals of Nuclear Energy, 2019, 130: 8-19. doi: 10.1016/j.anucene.2019.01.054
    [5]
    王大胜,刘攀,王海军,等. 稳压器波动管不同布置方式对热分层现象的影响[J]. 原子能科学技术,2015, 49(7): 1232-1236. doi: 10.7538/yzk.2015.49.07.1232
    [6]
    郭超,温丽晶,刘宇生,等. 瞬态工况下压水堆稳压器波动管热分层现象数值模拟[J]. 原子能科学技术,2015, 49(1): 58-63. doi: 10.7538/yzk.2015.49.01.0058
    [7]
    梁兵兵,李岗,王高阳. 稳压器波动管考虑热分层影响的疲劳分析[J]. 原子能科学技术,2008, 42(S2): 448-453.
    [8]
    KANG D G, JHUNG M J, CHANG S H. Fluid–structure interaction analysis for pressurizer surge line subjected to thermal stratification[J]. Nuclear Engineering and Design, 2011, 241(1): 257-269. doi: 10.1016/j.nucengdes.2010.10.023
    [9]
    TANG P, LIU Z W, QIAO H W, et al. Stress and fatigue analysis of pressurizer surge line under thermal stratification[J]. Key Engineering Materials, 2019, 795: 268-275. doi: 10.4028/www.scientific.net/KEM.795.268
    [10]
    LIU J Q, ZHANG J G, SHI J D, et al. Research of PWR pressurizer insurge characteristics on three-dimensional transient modeling[J]. Science and Technology of Nuclear Installations, 2018, 2018: 8150879.
    [11]
    LIU T, YI S B, WANG X C. Thermal stratification effects on surge line fatigue life based on finite element analysis[J]. Advanced Materials Research, 2013, 668: 551-554. doi: 10.4028/www.scientific.net/AMR.668.551
    [12]
    MUHAMMAD N, WANG M J, TIAN W X, et al. LES study on the turbulent thermal stratification and thermo-mechanical fatigue analysis for NPP surge line[J]. International Journal of Thermal Sciences, 2022, 178: 107608. doi: 10.1016/j.ijthermalsci.2022.107608
    [13]
    王东辉,傅孝龙,邝临源. 稳压器人孔密封分析研究[J]. 机械工程师,2017(10): 139-143. doi: 10.3969/j.issn.1002-2333.2017.10.053
    [14]
    高永建. 稳压器人孔密封结构疲劳分析[J]. 压力容器,2020, 37(11): 27-32. doi: 10.3969/j.issn.1001-4837.2020.11.005
    [15]
    陈聪,吴舸,傅孝龙,等. 抗热冲击稳压器双锥密封结构设计优化研究[J]. 核动力工程,2018, 39(4): 176-181. doi: 10.13832/j.jnpe.2018.04.0176
    [16]
    FELIPPA C A, PARK K C, FARHAT C. Partitioned analysis of coupled mechanical systems[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(24-25): 3247-3270. doi: 10.1016/S0045-7825(00)00391-1
    [17]
    余航,赵新文,傅晟威. 船用核动力装置止回阀的流固热耦合研究[J]. 核动力工程,2019, 40(4): 25-28. doi: 10.13832/j.jnpe.2019.04.0025
    [18]
    余航,赵新文,傅晟威,等. 基于流固热耦合的燃料元件包壳结构完整性分析[J]. 核动力工程,2022, 43(4): 106-112. doi: 10.13832/j.jnpe.2022.04.0106
    [19]
    陈玉清,魏柯,刘家磊. 船用压水堆小破口失水事故最佳估算的不确定性和敏感性分析[J]. 海军工程大学学报,2021, 33(1): 89-94. doi: 10.7495/j.issn.1009-3486.2021.01.016
    [20]
    肖文宇,范正伟. 小破口失水事故瞬态水力载荷计算中破口尺寸的影响[J]. 管道技术与设备,2020(6): 21-23.
    [21]
    杨江,田文喜,苏光辉,等. AP1000冷管段小破口失水事故分析[J]. 原子能科学技术,2011, 45(5): 541-547.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(23)

    Article Metrics

    Article views (323) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return