Citation: | Zhang Wenxiu, Zhang Guanghui. Treatment of Simulated Radioactive Cobalt Containing Wastewater by Ultra-low Pressure Reverse Osmosis Process[J]. Nuclear Power Engineering, 2023, 44(1): 187-191. doi: 10.13832/j.jnpe.2023.01.0187 |
[1] |
International Atomic Energy Agency. Operating experience with nuclear power stations in member states[Z]. Vienna: IAEA, 2020.
|
[2] |
International Atomic Energy Agency. Nuclear power reactors in the world[Z]. Vienna: IAEA, 2020.
|
[3] |
CHOO K H, KWON D J, LEE K W, et al. Selective removal of cobalt species using nanofiltration membranes[J]. Environmental Science & Technology, 2002, 36(6): 1330-1336.
|
[4] |
STRATHMANN H. Membrane separation processes: current relevance and future opportunities[J]. AIChE Journal, 2001, 47(5): 1077-1087. doi: 10.1002/aic.690470514
|
[5] |
KIM H J, KIM S J, HYEON S, et al. Application of desalination membranes to nuclide (Cs, Sr, and Co) separation[J]. ACS Omega, 2020, 5(32): 20261-20269. doi: 10.1021/acsomega.0c02106
|
[6] |
SASAKI T, OKABE J, HENMI M, et al. Cesium (Cs) and strontium (Sr) removal as model materials in radioactive water by advanced reverse osmosis membrane[J]. Desalination and Water Treatment, 2013, 51(7-9): 1672-1677. doi: 10.1080/19443994.2012.704696
|
[7] |
OZAKI H, LI H F. Rejection of organic compounds by ultra-low pressure reverse osmosis membrane[J]. Water Research, 2002, 36(1): 123-130. doi: 10.1016/S0043-1354(01)00197-X
|
[8] |
CHEN D, ZHAO X, LI F Z. Treatment of low level radioactive wastewater by means of NF process[J]. Nuclear Engineering and Design, 2014, 278: 249-254. doi: 10.1016/j.nucengdes.2014.08.001
|
[9] |
MA B, OH S, SHIN W S, et al. Removal of Co2+, Sr2+ and Cs+ from aqueous solution by phosphate-modified montmorillonite (PMM)[J]. Desalination, 2011, 276(1-3): 336-346. doi: 10.1016/j.desal.2011.03.072
|
[10] |
LEE B S. Nuclide separation modeling through reverse osmosis membranes in radioactive liquid waste[J]. Nuclear Engineering and Technology, 2015, 47(7): 859-866. doi: 10.1016/j.net.2015.08.001
|
[11] |
何利斌,徐文露,顾平,等. 单级超低压反渗透膜工艺处理模拟放射性锶废水[J]. 中国给水排水,2021, 37(9): 105-109. doi: 10.19853/j.zgjsps.1000-4602.2021.09.017
|
[12] |
李志超. 反渗透技术处理模拟含碘、铯、锶放射性废水的研究[D]. 天津: 天津大学, 2018: 39-54.
|
[13] |
OZAKI H, SHARMA K, SAKTAYWIN W. Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters[J]. Desalination, 2002, 144(1-3): 287-294. doi: 10.1016/S0011-9164(02)00329-6
|
[14] |
FIRDAOUS L, QUÉMÉNEUR F, SCHLUMPF J P, et al. Modification of the ionic composition of salt solutions by electrodialysis[J]. Desalination, 2004, 167: 397-402. doi: 10.1016/j.desal.2004.06.153
|
[15] |
ZHANG L, WEI J Y, ZHAO X, et al. Removal of strontium(II) and cobalt(II) from acidic solution by manganese antimonate[J]. Chemical Engineering Journal, 2016, 302: 733-743. doi: 10.1016/j.cej.2016.05.040
|
[16] |
DING S Y, YANG Y, HUANG H O, et al. Effects of feed solution chemistry on low pressure reverse osmosis filtration of cesium and strontium[J]. Journal of Hazardous Materials, 2015, 294: 27-34. doi: 10.1016/j.jhazmat.2015.03.056
|
[17] |
CHEN D, LI F Z, ZHAO X, et al. The influence of salts on the reverse osmosis performance treating simulated boron-containing low level radioactive wastewater[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(12): 3607-3612.
|
[18] |
CHILDRESS A E, ELIMELECH M. Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes[J]. Journal of Membrane Science, 1996, 119(2): 253-268. doi: 10.1016/0376-7388(96)00127-5
|
[19] |
SHIM Y, LEE H J, LEE S, et al. Effects of natural organic matter and ionic species on membrane surface charge[J]. Environmental Science & Technology, 2002, 36(17): 3864-3871.
|
[20] |
LI Q L, ELIMELECH M. Organic fouling and chemical cleaning of nanofiltration membranes: measurements and mechanisms[J]. Environmental Science & Technology, 2004, 38(17): 4683-4693.
|
[21] |
DING S Y, YANG Y, LI C, et al. The effects of organic fouling on the removal of radionuclides by reverse osmosis membranes[J]. Water Research, 2016, 95: 174-184. doi: 10.1016/j.watres.2016.03.028
|