Advance Search
Volume 44 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Zhang Wenxiu, Zhang Guanghui. Treatment of Simulated Radioactive Cobalt Containing Wastewater by Ultra-low Pressure Reverse Osmosis Process[J]. Nuclear Power Engineering, 2023, 44(1): 187-191. doi: 10.13832/j.jnpe.2023.01.0187
Citation: Zhang Wenxiu, Zhang Guanghui. Treatment of Simulated Radioactive Cobalt Containing Wastewater by Ultra-low Pressure Reverse Osmosis Process[J]. Nuclear Power Engineering, 2023, 44(1): 187-191. doi: 10.13832/j.jnpe.2023.01.0187

Treatment of Simulated Radioactive Cobalt Containing Wastewater by Ultra-low Pressure Reverse Osmosis Process

doi: 10.13832/j.jnpe.2023.01.0187
  • Received Date: 2022-01-22
  • Rev Recd Date: 2022-10-31
  • Publish Date: 2023-02-15
  • The radioactive wastewater produced by the operation, maintenance and decommissioning of nuclear power plants is seriously harmful to the social environment and life and health safety. A pilot plant (144 L/h) is used to study the removal effect of cobalt (Co) from simulated radioactive wastewater by ultra-low pressure reverse osmosis (ULPRO) process. The effects of operating pressure, recovery rate, influent concentration, coexisting ions and natural organic pollutants on it are determined. The results show that the removal rate of Co is positively correlated with the operating pressure and negatively correlated with the recovery rate, the removal rate of Co is constant at 99.5% with the increase of influent concentration, and 10 mg/L is the critical concentration for its change; As for coexisting ions, only Ca2+will inhibit the removal of Co, and the promotion effect of other ions is in the order of Na+>Mg2+, SO42−>Cl>NO3; Organic pollution reduces the membrane flux by 9.4%, but the removal rate of Co increases to 99.97%. The experimental results show that the ULPRO process has stable operation effect and high removal rate for the treatment of simulated radioactive wastewater containing Co, which can provide guidance for industrial application.

     

  • loading
  • [1]
    International Atomic Energy Agency. Operating experience with nuclear power stations in member states[Z]. Vienna: IAEA, 2020.
    [2]
    International Atomic Energy Agency. Nuclear power reactors in the world[Z]. Vienna: IAEA, 2020.
    [3]
    CHOO K H, KWON D J, LEE K W, et al. Selective removal of cobalt species using nanofiltration membranes[J]. Environmental Science & Technology, 2002, 36(6): 1330-1336.
    [4]
    STRATHMANN H. Membrane separation processes: current relevance and future opportunities[J]. AIChE Journal, 2001, 47(5): 1077-1087. doi: 10.1002/aic.690470514
    [5]
    KIM H J, KIM S J, HYEON S, et al. Application of desalination membranes to nuclide (Cs, Sr, and Co) separation[J]. ACS Omega, 2020, 5(32): 20261-20269. doi: 10.1021/acsomega.0c02106
    [6]
    SASAKI T, OKABE J, HENMI M, et al. Cesium (Cs) and strontium (Sr) removal as model materials in radioactive water by advanced reverse osmosis membrane[J]. Desalination and Water Treatment, 2013, 51(7-9): 1672-1677. doi: 10.1080/19443994.2012.704696
    [7]
    OZAKI H, LI H F. Rejection of organic compounds by ultra-low pressure reverse osmosis membrane[J]. Water Research, 2002, 36(1): 123-130. doi: 10.1016/S0043-1354(01)00197-X
    [8]
    CHEN D, ZHAO X, LI F Z. Treatment of low level radioactive wastewater by means of NF process[J]. Nuclear Engineering and Design, 2014, 278: 249-254. doi: 10.1016/j.nucengdes.2014.08.001
    [9]
    MA B, OH S, SHIN W S, et al. Removal of Co2+, Sr2+ and Cs+ from aqueous solution by phosphate-modified montmorillonite (PMM)[J]. Desalination, 2011, 276(1-3): 336-346. doi: 10.1016/j.desal.2011.03.072
    [10]
    LEE B S. Nuclide separation modeling through reverse osmosis membranes in radioactive liquid waste[J]. Nuclear Engineering and Technology, 2015, 47(7): 859-866. doi: 10.1016/j.net.2015.08.001
    [11]
    何利斌,徐文露,顾平,等. 单级超低压反渗透膜工艺处理模拟放射性锶废水[J]. 中国给水排水,2021, 37(9): 105-109. doi: 10.19853/j.zgjsps.1000-4602.2021.09.017
    [12]
    李志超. 反渗透技术处理模拟含碘、铯、锶放射性废水的研究[D]. 天津: 天津大学, 2018: 39-54.
    [13]
    OZAKI H, SHARMA K, SAKTAYWIN W. Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters[J]. Desalination, 2002, 144(1-3): 287-294. doi: 10.1016/S0011-9164(02)00329-6
    [14]
    FIRDAOUS L, QUÉMÉNEUR F, SCHLUMPF J P, et al. Modification of the ionic composition of salt solutions by electrodialysis[J]. Desalination, 2004, 167: 397-402. doi: 10.1016/j.desal.2004.06.153
    [15]
    ZHANG L, WEI J Y, ZHAO X, et al. Removal of strontium(II) and cobalt(II) from acidic solution by manganese antimonate[J]. Chemical Engineering Journal, 2016, 302: 733-743. doi: 10.1016/j.cej.2016.05.040
    [16]
    DING S Y, YANG Y, HUANG H O, et al. Effects of feed solution chemistry on low pressure reverse osmosis filtration of cesium and strontium[J]. Journal of Hazardous Materials, 2015, 294: 27-34. doi: 10.1016/j.jhazmat.2015.03.056
    [17]
    CHEN D, LI F Z, ZHAO X, et al. The influence of salts on the reverse osmosis performance treating simulated boron-containing low level radioactive wastewater[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(12): 3607-3612.
    [18]
    CHILDRESS A E, ELIMELECH M. Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes[J]. Journal of Membrane Science, 1996, 119(2): 253-268. doi: 10.1016/0376-7388(96)00127-5
    [19]
    SHIM Y, LEE H J, LEE S, et al. Effects of natural organic matter and ionic species on membrane surface charge[J]. Environmental Science & Technology, 2002, 36(17): 3864-3871.
    [20]
    LI Q L, ELIMELECH M. Organic fouling and chemical cleaning of nanofiltration membranes: measurements and mechanisms[J]. Environmental Science & Technology, 2004, 38(17): 4683-4693.
    [21]
    DING S Y, YANG Y, LI C, et al. The effects of organic fouling on the removal of radionuclides by reverse osmosis membranes[J]. Water Research, 2016, 95: 174-184. doi: 10.1016/j.watres.2016.03.028
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (274) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return