Citation: | Zhang Tengfei, Yin Han, Sun Qizheng, Xiao Wei. Application Research on VITAS—a General-purpose Neutron Transport Code[J]. Nuclear Power Engineering, 2023, 44(2): 15-23. doi: 10.13832/j.jnpe.2023.02.0015 |
[1] |
曹良志, 谢仲生, 李云召. 近代核反应堆物理分析[M]. 北京: 中国原子能出版社, 2017:4-7.
|
[2] |
DOWNAR T, STAUDENMIER J. Theory Manual for the PARCS Neutronics core simulator: PARCS v2.6 U. S. NRC Core Neutronics Simulator, theory manual[Z]. Indiana, United States: Purdue University, 2004.
|
[3] |
LAWRENCE R D. The DIF3D nodal neutronics option for two- and three-dimensional diffusion theory calculations in hexagonal geometry: ANL-83-1[R]. Argonne, Illinois, United States: Argonne National Lab, 1983.
|
[4] |
VER PLANCK D M, COBB W R, BORLAND R S, et al. SIMULATE-E: a nodal core-analysis program for light-water reactors. Computer code user's manual: EPRI-NP-2792-CCM[R]. Framingham: Yankee Atomic Electric Co, 1983.
|
[5] |
YANG W, WU H C, LI Y Z, et al. Development and verification of PWR-core fuel management calculation code system NECP-Bamboo: part Ⅱ Bamboo-Core[J]. Nuclear Engineering and Design, 2018, 337: 279-290. doi: 10.1016/j.nucengdes.2018.07.017
|
[6] |
ZHANG T F, LI Z P. Variational nodal methods for neutron transport: 40 years in review[J]. Nuclear Engineering and Technology, 2022, 54(9): 3181-3204. doi: 10.1016/j.net.2022.04.012
|
[7] |
ZHANG T F, WU H C, CAO L Z, et al. An improved variational nodal method for the solution of the three- dimensional steady-state multi-group neutron transport equation[J]. Nuclear Engineering and Design, 2018, 337: 419-427. doi: 10.1016/j.nucengdes.2018.07.009
|
[8] |
ZHANG T F, XIONG J B, LIU L G, et al. Development and implementation of an integral variational nodal method to the hexagonal geometry nuclear reactors[J]. Annals of Nuclear Energy, 2019, 131: 210-220. doi: 10.1016/j.anucene.2019.03.031
|
[9] |
ZHUANG K, SHANG W, LI T, et al. Variational nodal method for three-dimensional multigroup neutron diffusion equation based on arbitrary triangular prism[J]. Annals of Nuclear Energy, 2021, 158: 108285. doi: 10.1016/j.anucene.2021.108285
|
[10] |
ZHANG T F, LEWIS E E, SMITH M A, et al. A variational nodal approach to 2D/1D pin resolved neutron transport for pressurized water reactors[J]. Nuclear Science and Engineering, 2017, 186(2): 120-133. doi: 10.1080/00295639.2016.1273023
|
[11] |
ZHANG T F, WANG Y P, LEWIS E E, et al. A three-dimensional variational nodal method for pin-resolved neutron transport analysis of pressurized water reactors[J]. Nuclear Science and Engineering, 2017, 188(2): 160-174. doi: 10.1080/00295639.2017.1350002
|
[12] |
XIAO W, LI X Y, LI P J, et al. High-fidelity multi-physics coupling study on advanced heat pipe reactor[J]. Computer Physics Communications, 2022, 270: 108152. doi: 10.1016/j.cpc.2021.108152
|
[13] |
GEUZAINE C, REMACLE J F. Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities[J]. International Journal for Numerical Methods in Engineering, 2009, 79(11): 1309-1331. doi: 10.1002/nme.2579
|
[14] |
LOELIGER J, MCCULLOUGH M. Version control with Git: powerful tools and techniques for collaborative software development[M]. 2nd ed. 1005 Gravenstein Highway North, Sebastopol: O'Reilly Media, 2012:336.
|
[15] |
BONNEY G E, KISSLING G E. Gram‐Schmidt orthogonalization of multinormal variates: applications in genetics[J]. Biometrical Journal, 1986, 28(4): 417-425. doi: 10.1002/bimj.4710280407
|
[16] |
TAKEDA T, IKEDA H. 3-D neutron transport benchmarks[J]. Journal of Nuclear Science and Technology, 1991, 28(7): 656-669. doi: 10.1080/18811248.1991.9731408
|
[17] |
ROMANO P K, FORGET B. The OpenMC Monte Carlo particle transport code[J]. Annals of Nuclear Energy, 2013, 51: 274-281. doi: 10.1016/j.anucene.2012.06.040
|
[18] |
SEUBERT A, SUREDA A, BADER J, et al. The 3-D time-dependent transport code TORT-TD and its coupling with the 3D thermal-hydraulic code ATTICA3D for HTGR applications[J]. Nuclear Engineering and Design, 2012, 251: 173-180. doi: 10.1016/j.nucengdes.2011.09.067
|
[19] |
GOLUOGLU S, BENTLEY C, DEMEGLIO R, et al. A deterministic method for transient, three-dimensional neutron transport: MOL. 19980504.0231[R]. Las Vegas: Yucca Mountain Project, 1998.
|
[20] |
Argonne Code Center. Argonne Code Center: benchmark problem book: ANL-7416[R]. Argonne, Illinois, United States: American Nuclear Society, 1977.
|
[21] |
HOU J, IVANOV K N, BOYARINOV V F, et al. OECD/NEA benchmark for time-dependent neutron transport calculations without spatial homogenization[J]. Nuclear Engineering and Design, 2017, 317: 177-189. doi: 10.1016/j.nucengdes.2017.02.008
|
[22] |
SHEN Q C, WANG Y R, JABAAY D, et al. Transient analysis of C5G7-TD benchmark with MPACT[J]. Annals of Nuclear Energy, 2019, 125: 107-120. doi: 10.1016/j.anucene.2018.10.049
|