Citation: | Yang Tao, Zhao Pengcheng, Zhao Yanan, Yu Tao. Development of Reduced-Order Thermal Stratification Model for Upper Plenum of Lead-Bismuth Fast Reactor Based on CFD[J]. Nuclear Power Engineering, 2023, 44(2): 48-53. doi: 10.13832/j.jnpe.2023.02.0048 |
[1] |
薛秀丽,杨红义,冯预恒. 日本文殊快堆紧急停堆后堆芯出口腔室瞬态工况模拟研究[J]. 原子能科学技术,2017, 51(10): 1827-1833. doi: 10.7538/yzk.2017.51.10.1827
|
[2] |
MORIYA S, TANAKA N, KATANO N, et al. Effects of Reynolds number and Richardson number on thermal stratification in hot plenum[J]. Nuclear Engineering and Design, 1987, 99: 441-451. doi: 10.1016/0029-5493(87)90140-3
|
[3] |
SCHNEIDER J A, ANDERSON M H. Thermal stratification in a pool-type geometry: DOE-UWM-10268-3[R]. Madison: University of Wisconsin Madison, 2019.
|
[4] |
BANDINI G, POLIDORI M, GERSCHENFELD A, et al. Assessment of systems codes and their coupling with CFD codes in thermal–hydraulic applications to innovative reactors[J]. Nuclear Engineering and Design, 2015, 281: 22-38. doi: 10.1016/j.nucengdes.2014.11.003
|
[5] |
YUE N N, MA Z Y, CAI R, et al. Thermal-hydraulic analysis of EBR-II shutdown heat removal tests SHRT-17 and SHRT-45R[J]. Progress in Nuclear Energy, 2015, 85: 682-693. doi: 10.1016/j.pnucene.2015.09.002
|
[6] |
LU C H, WU Z Y, MORGAN S, et al. An efficient 1-D thermal stratification model for pool-type sodium-cooled fast reactors[J]. Nuclear Technology, 2020, 206(10): 1465-1480. doi: 10.1080/00295450.2020.1719799
|
[7] |
DONG Z Y, QIU H R, WANG M J, et al. Numerical simulation on the thermal stratification in the lead pool of lead-cooled fast reactor (LFR)[J]. Annals of Nuclear Energy, 2022, 174: 109176. doi: 10.1016/j.anucene.2022.109176
|
[8] |
HE S P, WANG M J, ZHANG J, et al. Numerical simulation of three-dimensional flow and heat transfer characteristics of liquid lead–bismuth[J]. Nuclear Engineering and Technology, 2021, 53(6): 1834-1845. doi: 10.1016/j.net.2020.12.025
|
[9] |
WANG M J, WANG Y J, TIAN W X, et al. Recent progress of CFD applications in PWR thermal hydraulics study and future directions[J]. Annals of Nuclear Energy, 2021, 150: 107836. doi: 10.1016/j.anucene.2020.107836
|
[10] |
SHIBAHARA M, TAKATA T, YAMAGUCHI A. Numerical study on thermal stratification phenomena in upper plenum of LMFBR “MONJU”[J]. Nuclear Engineering and Design, 2013, 258: 226-234. doi: 10.1016/j.nucengdes.2013.02.007
|
[11] |
SCHNEIDER J, ANDERSON M, BAGLIETTO E, et al. Thermal stratification analysis for sodium fast reactors [C]//Proceedings of 2018 International Congress on Advances in Nuclear Power Plants. Charlotte, 2018.
|
[12] |
ABE K, KONDOH T, NAGANO Y. A two-equation heat transfer model reflecting second-moment closures for wall and free turbulent flows[J]. International Journal of Heat and Fluid Flow, 1996, 17(3): 228-237. doi: 10.1016/0142-727X(96)00037-9
|
[13] |
ABE K, KONDOH T, NAGANO Y. A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows—I. Flow field calculations[J]. International Journal of Heat and Mass Transfer, 1994, 37(1): 139-151. doi: 10.1016/0017-9310(94)90168-6
|
[14] |
FAZIO Concetta. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies-2015 edition-Introduction [M]. Paris: OECD, 2016: 17-27.
|
[15] |
丁鹏,陶文铨. 建立低阶模型的POD方法[J]. 工程热物理学报,2009, 30(6): 1019-1021.
|
[16] |
ROWLEY C W, COLONIUS T, MURRAY R M. Model reduction for compressible flows using POD and Galerkin projection[J]. Physica D:Nonlinear Phenomena, 2004, 189(1-2): 115-129. doi: 10.1016/j.physd.2003.03.001
|
[17] |
VOLKWEIN S. Model reduction using proper orthogonal decomposition [EB/OL]. (2011-12-07). [2022-05-01]. http://www.uni-graz.at/imawww/volkwein/POD.pdf.
|
[18] |
李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012: 271-290.
|