Citation: | Zhang Lin, Liu Hanzhou, Liu Xiaojing, Chen Yong, Chen Deqi. Model Study on Bubble Slide and Early-Stage Condensation Growth in Rectangular Narrow Channel[J]. Nuclear Power Engineering, 2023, 44(2): 69-76. doi: 10.13832/j.jnpe.2023.02.0069 |
[1] |
VOSOUGH A, ASSARI M R, PEYGHAMBARZADEH S M, et al. Influence of fluid flow rate on the fouling resistance of calcium sulfate aqueous solution in subcooled flow boiling condition[J]. International Journal of Thermal Sciences, 2020, 154: 106397. doi: 10.1016/j.ijthermalsci.2020.106397
|
[2] |
AZIZIFAR S, AMERI M, BEHROYAN I. An experimental study of subcooled flow boiling of water in the horizontal and vertical direction of a metal-foam tube[J]. Thermal Science and Engineering Progress, 2020, 20: 100748. doi: 10.1016/j.tsep.2020.100748
|
[3] |
秦浩,王明军,李林峰,等. 基于OpenFOAM的过冷流动沸腾数值模拟[J]. 原子能科学技术,2019, 53(11): 2157-2161.
|
[4] |
LEVENSPIEL O. Collapse of steam bubbles in water[J]. Industrial & Engineering Chemistry, 1959, 51(6): 787-790.
|
[5] |
HAN C Y, GRIFFITH P. The mechanism of heat transfer in nucleate pool boiling—part I: Bubble initiation, growth and departure[J]. International Journal of Heat and Mass Transfer, 1965, 8(6): 887-904. doi: 10.1016/0017-9310(65)90073-6
|
[6] |
ZUBER N. The dynamics of vapor bubbles in nonuniform temperature fields[J]. International Journal of Heat and Mass Transfer, 1961, 2(1-2): 83-98. doi: 10.1016/0017-9310(61)90016-3
|
[7] |
胡健,高璞珍,许超,等. 窄矩形通道内过冷流动沸腾汽泡生长模型研究[J]. 原子能科学技术,2014, 48(12): 2213-2218.
|
[8] |
陈德奇,潘良明,袁德文,等. 竖直矩形窄流道内汽泡生长的实验研究[J]. 核动力工程,2008, 29(5): 52-55, 59.
|
[9] |
JUNG S, KIM H. An experimental method to simultaneously measure the dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface[J]. International Journal of Heat and Mass Transfer, 2014, 73: 365-375. doi: 10.1016/j.ijheatmasstransfer.2014.02.014
|
[10] |
DEMIRAY F, KIM J. Microscale heat transfer measurements during pool boiling of FC-72: effect of subcooling[J]. International Journal of Heat and Mass Transfer, 2004, 47(14-16): 3257-3268. doi: 10.1016/j.ijheatmasstransfer.2004.02.008
|
[11] |
HOANG N H, CHU I C, EUH D J, et al. A mechanistic model for predicting the maximum diameter of vapor bubbles in a subcooled boiling flow[J]. International Journal of Heat and Mass Transfer, 2016, 94: 174-179. doi: 10.1016/j.ijheatmasstransfer.2015.11.051
|
[12] |
YOO J, ESTRADA-PEREZ C E, HASSAN Y A. Development of a mechanistic model for sliding bubbles growth prediction in subcooled boiling flow[J]. Applied Thermal Engineering, 2018, 138: 657-667. doi: 10.1016/j.applthermaleng.2018.04.096
|
[13] |
SERNAS V, HOOPER F C. The initial vapor bubble growth on a heated wall during nucleate boiling[J]. International Journal of Heat and Mass Transfer, 1969, 12(12): 1627-1639. doi: 10.1016/0017-9310(69)90097-0
|
[14] |
ZHANG L, LIU H Z, CHEN D Q, et al. Experimental investigation on the characteristics of maximum bubble size of subcooled flow boiling in narrow rectangular channel under different system pressure[J]. International Journal of Heat and Mass Transfer, 2021, 176: 121426. doi: 10.1016/j.ijheatmasstransfer.2021.121426
|