Citation: | Wang Zhanwei, Yan Jun, Peng Zhenxun, Ren Qisen, Liao Yehong, Li Sigong, Zhao Yahuan. Experimental Study of Cr-coated Zirconium Alloy Cladding under Simulated LOCA Conditions[J]. Nuclear Power Engineering, 2023, 44(2): 122-128. doi: 10.13832/j.jnpe.2023.02.0122 |
[1] |
YEOM H, LOCKHART C, MARIANI R, et al. Evaluation of steam corrosion and water quenching behavior of zirconium-silicide coated LWR fuel claddings[J]. Journal of Nuclear Materials, 2018, 499: 256-267. doi: 10.1016/j.jnucmat.2017.11.045
|
[2] |
PINT B A, TERRANI K A, YAMAMOTO Y, et al. Material selection for accident tolerant fuel cladding[J]. Metallurgical and Materials Transactions E, 2015, 2(3): 190-196. doi: 10.1007/s40553-015-0056-7
|
[3] |
ZHANG B, GAO P C, XU T, et al. Performance evaluation of accident tolerant fuel under station blackout accident in PWR nuclear power plant by improved ISAA code[J]. Nuclear Engineering and Technology, 2022, 54(7): 2475-2490. doi: 10.1016/j.net.2022.01.024
|
[4] |
YAMAMOTO Y, PINT B A, TERRANI K A, et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors[J]. Journal of Nuclear Materials, 2015, 467: 703-716. doi: 10.1016/j.jnucmat.2015.10.019
|
[5] |
KIM H G, KIM I H, JUNG Y I, et al. Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating[J]. Journal of Nuclear Materials, 2015, 465: 531-539. doi: 10.1016/j.jnucmat.2015.06.030
|
[6] |
MAIER B R, GARCIA-DIAZ B L, HAUCH B, et al. Cold spray deposition of Ti2AlC coatings for improved nuclear fuel cladding[J]. Journal of Nuclear Materials, 2015, 466: 712-717. doi: 10.1016/j.jnucmat.2015.06.028
|
[7] |
ALAT E, MOTTA A T, COMSTOCK R J, et al. Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding[J]. Journal of Nuclear Materials, 2016, 478: 236-244. doi: 10.1016/j.jnucmat.2016.05.021
|
[8] |
SHAPOVALOV K, JACOBSEN G M, ALVA L, et al. Strength of SiCf-SiCm composite tube under uniaxial and multiaxial loading[J]. Journal of Nuclear Materials, 2018, 500: 280-294. doi: 10.1016/j.jnucmat.2018.01.001
|
[9] |
MAIER B, YEOM H, JOHNSON G, et al. Development of cold spray chromium coatings for improved accident tolerant zirconium-alloy cladding[J]. Journal of Nuclear Materials, 2019, 519: 247-254. doi: 10.1016/j.jnucmat.2019.03.039
|
[10] |
BRACHET J C, IDARRAGA-TRUJILLO I, FLEM M L, et al. Early studies on Cr-Coated Zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactors[J]. Journal of Nuclear Materials, 2019, 517: 268-285. doi: 10.1016/j.jnucmat.2019.02.018
|
[11] |
BISCHOFF J, DELAFOY C, VAUGLIN C, et al. AREVA NP's enhanced accident-tolerant fuel developments: Focus on Cr-coated M5 cladding[J]. Nuclear Engineering and Technology, 2018, 50(2): 223-228. doi: 10.1016/j.net.2017.12.004
|
[12] |
PARK J H, KIM H G, PARK J Y, et al. High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings[J]. Surface and Coatings Technology, 2015, 280: 256-259. doi: 10.1016/j.surfcoat.2015.09.022
|
[13] |
BRACHET J C, LE SAUX M, BISCHOFF J, et al. Evaluation of Equivalent Cladding Reacted parameters of Cr-coated claddings oxidized in steam at 1200 C in relation with oxygen diffusion/partitioning and post-quench ductility[J]. Journal of Nuclear Materials, 2020, 533: 152106. doi: 10.1016/j.jnucmat.2020.152106
|
[14] |
YEOM H, MAIER B, JOHNSON G, et al. High temperature oxidation and microstructural evolution of cold spray chromium coatings on Zircaloy-4 in steam environments[J]. Journal of Nuclear Materials, 2019, 526: 151737. doi: 10.1016/j.jnucmat.2019.151737
|
[15] |
PARK D J, KIM H G, JUNG Y I, et al. Behavior of an improved Zr fuel cladding with oxidation resistant coating under loss-of-coolant accident conditions[J]. Journal of Nuclear Materials, 2016, 482: 75-82. doi: 10.1016/j.jnucmat.2016.10.021
|
[16] |
KIM H G, KIM I H, JUNG Y I, et al. Out-of-pile performance of surface-modified Zr cladding for accident tolerant fuel in LWRs[J]. Journal of Nuclear Materials, 2018, 510: 93-99. doi: 10.1016/j.jnucmat.2018.07.061
|
[17] |
CHUNG H M. Fuel behavior under loss-of-coolant accident situations[J]. Nuclear Engineering and Technology, 2005, 37(4): 327-362.
|
[18] |
RIBIS J, WU A, BRACHET J C, et al. Atomic-scale interface structure of a Cr-coated Zircaloy-4 material[J]. Journal of Materials Science, 2018, 53(14): 9879-9895. doi: 10.1007/s10853-018-2333-1
|