Advance Search
Volume 44 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
Wang Zhanwei, Yan Jun, Peng Zhenxun, Ren Qisen, Liao Yehong, Li Sigong, Zhao Yahuan. Experimental Study of Cr-coated Zirconium Alloy Cladding under Simulated LOCA Conditions[J]. Nuclear Power Engineering, 2023, 44(2): 122-128. doi: 10.13832/j.jnpe.2023.02.0122
Citation: Wang Zhanwei, Yan Jun, Peng Zhenxun, Ren Qisen, Liao Yehong, Li Sigong, Zhao Yahuan. Experimental Study of Cr-coated Zirconium Alloy Cladding under Simulated LOCA Conditions[J]. Nuclear Power Engineering, 2023, 44(2): 122-128. doi: 10.13832/j.jnpe.2023.02.0122

Experimental Study of Cr-coated Zirconium Alloy Cladding under Simulated LOCA Conditions

doi: 10.13832/j.jnpe.2023.02.0122
  • Received Date: 2022-05-17
  • Rev Recd Date: 2022-12-04
  • Publish Date: 2023-04-15
  • The Fukushima nuclear accident in Japan in 2011 exposed the inherent safety problems of traditional zirconium alloy fuel cladding under LOCA conditions. To investigate the performance of a new Cr-coated zirconium alloy cladding under LOCA conditions, high temperature steam oxidation and quenching experiments under simulated LOCA conditions are carried out for 12~15 μm thick Cr-coated Zr-1Nb alloy cladding tube coated by physical vapor deposition (PVD) process, the oxidation temperature and oxidation time were 1200℃, 1300℃ and 10 min, 20 min, respectively, the quenching was performed around 800℃, then ring compression test was performed for the quenched tube. The results indicated that no spalling was found for Cr coatings under experiment conditions, intense Cr2O3 layer which formed on the outer surface of Cr-coated tube retarded the diffusion of O into zirconium substrate, protecting the zirconium alloy from oxidized into ZrO2 and α-Zr(O) layers, Cr-coated zirconium-alloy cladding remained ductile after quenching. It can be concluded that Cr-coated Zirconium alloy behaves better than traditional Zirconium alloy under the experimental conditions.

     

  • loading
  • [1]
    YEOM H, LOCKHART C, MARIANI R, et al. Evaluation of steam corrosion and water quenching behavior of zirconium-silicide coated LWR fuel claddings[J]. Journal of Nuclear Materials, 2018, 499: 256-267. doi: 10.1016/j.jnucmat.2017.11.045
    [2]
    PINT B A, TERRANI K A, YAMAMOTO Y, et al. Material selection for accident tolerant fuel cladding[J]. Metallurgical and Materials Transactions E, 2015, 2(3): 190-196. doi: 10.1007/s40553-015-0056-7
    [3]
    ZHANG B, GAO P C, XU T, et al. Performance evaluation of accident tolerant fuel under station blackout accident in PWR nuclear power plant by improved ISAA code[J]. Nuclear Engineering and Technology, 2022, 54(7): 2475-2490. doi: 10.1016/j.net.2022.01.024
    [4]
    YAMAMOTO Y, PINT B A, TERRANI K A, et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors[J]. Journal of Nuclear Materials, 2015, 467: 703-716. doi: 10.1016/j.jnucmat.2015.10.019
    [5]
    KIM H G, KIM I H, JUNG Y I, et al. Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating[J]. Journal of Nuclear Materials, 2015, 465: 531-539. doi: 10.1016/j.jnucmat.2015.06.030
    [6]
    MAIER B R, GARCIA-DIAZ B L, HAUCH B, et al. Cold spray deposition of Ti2AlC coatings for improved nuclear fuel cladding[J]. Journal of Nuclear Materials, 2015, 466: 712-717. doi: 10.1016/j.jnucmat.2015.06.028
    [7]
    ALAT E, MOTTA A T, COMSTOCK R J, et al. Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding[J]. Journal of Nuclear Materials, 2016, 478: 236-244. doi: 10.1016/j.jnucmat.2016.05.021
    [8]
    SHAPOVALOV K, JACOBSEN G M, ALVA L, et al. Strength of SiCf-SiCm composite tube under uniaxial and multiaxial loading[J]. Journal of Nuclear Materials, 2018, 500: 280-294. doi: 10.1016/j.jnucmat.2018.01.001
    [9]
    MAIER B, YEOM H, JOHNSON G, et al. Development of cold spray chromium coatings for improved accident tolerant zirconium-alloy cladding[J]. Journal of Nuclear Materials, 2019, 519: 247-254. doi: 10.1016/j.jnucmat.2019.03.039
    [10]
    BRACHET J C, IDARRAGA-TRUJILLO I, FLEM M L, et al. Early studies on Cr-Coated Zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactors[J]. Journal of Nuclear Materials, 2019, 517: 268-285. doi: 10.1016/j.jnucmat.2019.02.018
    [11]
    BISCHOFF J, DELAFOY C, VAUGLIN C, et al. AREVA NP's enhanced accident-tolerant fuel developments: Focus on Cr-coated M5 cladding[J]. Nuclear Engineering and Technology, 2018, 50(2): 223-228. doi: 10.1016/j.net.2017.12.004
    [12]
    PARK J H, KIM H G, PARK J Y, et al. High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings[J]. Surface and Coatings Technology, 2015, 280: 256-259. doi: 10.1016/j.surfcoat.2015.09.022
    [13]
    BRACHET J C, LE SAUX M, BISCHOFF J, et al. Evaluation of Equivalent Cladding Reacted parameters of Cr-coated claddings oxidized in steam at 1200 C in relation with oxygen diffusion/partitioning and post-quench ductility[J]. Journal of Nuclear Materials, 2020, 533: 152106. doi: 10.1016/j.jnucmat.2020.152106
    [14]
    YEOM H, MAIER B, JOHNSON G, et al. High temperature oxidation and microstructural evolution of cold spray chromium coatings on Zircaloy-4 in steam environments[J]. Journal of Nuclear Materials, 2019, 526: 151737. doi: 10.1016/j.jnucmat.2019.151737
    [15]
    PARK D J, KIM H G, JUNG Y I, et al. Behavior of an improved Zr fuel cladding with oxidation resistant coating under loss-of-coolant accident conditions[J]. Journal of Nuclear Materials, 2016, 482: 75-82. doi: 10.1016/j.jnucmat.2016.10.021
    [16]
    KIM H G, KIM I H, JUNG Y I, et al. Out-of-pile performance of surface-modified Zr cladding for accident tolerant fuel in LWRs[J]. Journal of Nuclear Materials, 2018, 510: 93-99. doi: 10.1016/j.jnucmat.2018.07.061
    [17]
    CHUNG H M. Fuel behavior under loss-of-coolant accident situations[J]. Nuclear Engineering and Technology, 2005, 37(4): 327-362.
    [18]
    RIBIS J, WU A, BRACHET J C, et al. Atomic-scale interface structure of a Cr-coated Zircaloy-4 material[J]. Journal of Materials Science, 2018, 53(14): 9879-9895. doi: 10.1007/s10853-018-2333-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (390) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return