Advance Search
Volume 44 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
Hao Yuchen, Li Yue, Wang Jinhua, Gong Menghang, Wu Bin, Wang Haitao, Ma Tao, Liu Bing. Structure-Performance-Cost Integration Multi-Objective Optimization Design for HTR Fuel Storage Canister[J]. Nuclear Power Engineering, 2023, 44(2): 145-151. doi: 10.13832/j.jnpe.2023.02.0145
Citation: Hao Yuchen, Li Yue, Wang Jinhua, Gong Menghang, Wu Bin, Wang Haitao, Ma Tao, Liu Bing. Structure-Performance-Cost Integration Multi-Objective Optimization Design for HTR Fuel Storage Canister[J]. Nuclear Power Engineering, 2023, 44(2): 145-151. doi: 10.13832/j.jnpe.2023.02.0145

Structure-Performance-Cost Integration Multi-Objective Optimization Design for HTR Fuel Storage Canister

doi: 10.13832/j.jnpe.2023.02.0145
  • Received Date: 2022-05-26
  • Rev Recd Date: 2023-02-12
  • Publish Date: 2023-04-15
  • Fuel storage canister is a key equipment in the fuel supply system for high temperature reactor (HTR). In order to explore the optimal design scheme, a structure-performance-cost integration multi-objective optimization design method for fuel storage canister is proposed as follows: select the structural plate thickness of fuel storage canister as the design variable, use the Latin hypercube sampling (LHS) method to generate uniform sampling points, obtain the drop response through numerical calculation, and employ the hybrid radial basis function neural network (RBFNN)-feedforward neural network (FFNN) to construct a surrogate model. With the optimization design objectives of minimizing the maximum plastic deformation, the cost and the mass, constrain the radial displacement expansion under the action of pebble bed, and solve the optimization problem by using the strength Pareto evolutionary algorithm (SPEA-Ⅱ). The results show that the safety of the fuel storage canister is significantly improved, and the maximum plastic deformation can be reduced by 20.17%; it has good economical efficiency and lightweight effect, the cost of a single canister can be reduced by 2,128 yuan, and the mass can be reduced by 12.54%. The integration optimization method proposed in this paper can provide reference for the fuel storage canister design.

     

  • loading
  • [1]
    刘翔. HTR-PM乏燃料贮罐跌落工况的安全性分析与计算[D]. 北京: 清华大学, 2015.
    [2]
    林木森. 球床堆燃料贮存容器冲击动力学特性及计算方法的研究[D]. 北京: 清华大学, 2020.
    [3]
    HAO Y C, LI Y, LIN M S, et al. Containment integrity and sealing assessment for HTR-PM600 fresh fuel transport package under impact loading[J]. Frontiers in Energy Research, 2022, 10: 914090. doi: 10.3389/fenrg.2022.914090
    [4]
    郝予琛,王金华,王海涛,等. HTR-PM600新燃料贮存容器跌落冲击安全性能[J]. 清华大学学报:自然科学版,2022, 62(10): 1668-1674.
    [5]
    KIM K S, KIM J S, CHOI K S, et al. Dynamic impact characteristics of KN-18 SNF transport cask – Part 2: sensitivity analysis of modeling and design parameters[J]. Annals of Nuclear Energy, 2010, 37(4): 560-571. doi: 10.1016/j.anucene.2009.12.024
    [6]
    HAO Y C, LI Y, WANG J H, et al. Study on the impact limiter design in spent fuel transfer cask in nuclear power plants [C]//Proceedings of 2020 International Conference on Nuclear Engineering Collocated with the ASME 2020 Power Conference. Anaheim, California, USA: ASME, 2020.
    [7]
    HAO Y C, LI Y, WU B, et al. Optimization analysis of HTR-PM600 fresh fuel transport container under multiple impact loading conditions[J]. Annals of Nuclear Energy, 2022, 175: 109216. doi: 10.1016/j.anucene.2022.109216
    [8]
    American Society of Mechanical Engineers. 2015 BPVC section II-materials - Part D-properties-(customary): ASME BPVC.II.D.M-2015[R]. New York: American Society of Mechanical Engineers, 2015.
    [9]
    LIN M S, WANG J H, WU B, et al. Dynamic analysis of dry storage canister and the spent fuels inside under vertical drop in HTR-PM[J]. Annals of Nuclear Energy, 2021, 154: 108030. doi: 10.1016/j.anucene.2020.108030
    [10]
    孙其诚, 王光谦. 颗粒物质力学导论[M]. 北京: 科学出版社, 2009: 31-35.
    [11]
    王传青. 白车身前端结构—材料—性能一体化轻量化多目标协同优化设计[D]. 长春: 吉林大学, 2016.
    [12]
    SHARMA K, PAWASKAR D N, GUHA A, et al. Optimization of cask for transport of radioactive material under impact loading[J]. Nuclear Engineering and Design, 2014, 273: 190-201. doi: 10.1016/j.nucengdes.2014.03.021
    [13]
    熊锋. 车身结构轻量化与抗撞性多目标协同优化设计方法研究[D]. 长春: 吉林大学, 2018.
    [14]
    周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 108.
    [15]
    STANDER N, ROUX W, GOEL T, et al. LS-OPT® user's manual [M]. Livermore, California: Livermore Software Technology Corporation, 2022: 584.
    [16]
    王康,张树生,何卫平,等. 基于SPEA2的复杂机械产品选择装配方法[J]. 上海交通大学学报,2016, 50(7): 1047-1053. doi: 10.16183/j.cnki.jsjtu.2016.07.011
    [17]
    谭琦. 多目标优化算法在多客户批处理机环境下的应用研究[D]. 合肥: 中国科学技术大学, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (187) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return