Citation: | Cai Yun, Wang Lianjie, Wang Liangzi, Xia Bangyang, Lou Lei, Zhang Bin, Zhang Ce, Hu Yuying. Preliminary Conceptual Design of Ultra-high Flux Fast Neutron Test Reactor Core[J]. Nuclear Power Engineering, 2023, 44(2): 222-226. doi: 10.13832/j.jnpe.2023.02.0222 |
[1] |
GOLUOGLU S, DODDS H L. Improved neutronics model of the high flux isotope reactor[J]. Nuclear Technology, 1995, 112(1): 142-153. doi: 10.13182/NT95-A15859
|
[2] |
FEINBERG S M, KONOBEEVSKII S T, DOLLEZHAL’ N A, et al. The 50 mw research reactor SM[J]. Journal of Nuclear Energy. Parts A/B. Reactor Science and Technology, 1962, 16(11-12): 533-542. doi: 10.1016/0368-3230(62)90168-4
|
[3] |
SEREBROV A P. High flux reactor PIK and the associated research program[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1989, 284(1): 212-215.
|
[4] |
DEHART M D, KARRIEM Z, POPE M A, et al. Fuel element design and analysis for potential LEU conversion of the Advanced Test Reactor[J]. Progress in Nuclear Energy, 2018, 104: 117-135. doi: 10.1016/j.pnucene.2017.09.007
|
[5] |
SHATILLA Y. A pressure-tube advanced burner test reactor concept[J]. Nuclear Engineering and Design, 2008, 238(1): 102-108. doi: 10.1016/j.nucengdes.2007.07.003
|
[6] |
邓才玉,邱立青,王振东,等. HFETR堆芯及φ63辐照孔道γ释热研究[J]. 核动力工程,2007, 28(6): 97-100. doi: 10.3969/j.issn.0258-0926.2007.06.023
|
[7] |
ELISEEV V A, KOROBEYNIKOVA L V, MASLOV P A, et al. ON feasibility of using nitride and metallic fuel in the MBIR reactor core[J]. Nuclear Energy and Technology, 2016, 2(3): 179-182. doi: 10.1016/j.nucet.2016.07.009
|
[8] |
HEIDET F, ROGLANS-RIBAS J. Core design activities of the versatile test reactor – conceptual phase[J]. EPJ Web of Conferences, 2021, 247: 01010.
|