Advance Search
Volume 44 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
Lu Dingsheng, Wang Chen, Wang Chenglong, Yue Nina, Yang Ping, Tian Wenxi, Su Guanghui, Qiu Suizheng. Study on Oxidation Corrosion Characteristics of Horizontal Lead-Bismuth Reactor Core[J]. Nuclear Power Engineering, 2023, 44(3): 96-103. doi: 10.13832/j.jnpe.2023.03.0096
Citation: Lu Dingsheng, Wang Chen, Wang Chenglong, Yue Nina, Yang Ping, Tian Wenxi, Su Guanghui, Qiu Suizheng. Study on Oxidation Corrosion Characteristics of Horizontal Lead-Bismuth Reactor Core[J]. Nuclear Power Engineering, 2023, 44(3): 96-103. doi: 10.13832/j.jnpe.2023.03.0096

Study on Oxidation Corrosion Characteristics of Horizontal Lead-Bismuth Reactor Core

doi: 10.13832/j.jnpe.2023.03.0096
  • Received Date: 2022-07-04
  • Rev Recd Date: 2022-08-17
  • Publish Date: 2023-06-15
  • In order to study the oxidation corrosion characteristics of horizontal lead-bismuth reactor core, a liquid lead-bismuth oxidation corrosion model was established in this study. Based on computational fluid dynamics method, the self-defined source term method of transport equation was used to realize coupling calculation. The results show that the thickest oxidation layer on the fuel rod surface of the reactor core is located at the outlet position under the reference condition, and the oxidation layer on the fuel rod surface at the center is significantly higher than that near the fuel assembly box. After 10,000 hours, the surface of the fuel rod at the center still maintained a double oxide layer structure, and the average total thickness of the double oxide layer was 1.32 μm. This study provides a numerical simulation method for the oxidation corrosion characteristics of lead-bismuth reactor cores, which can be used for the prediction of oxidation corrosion of lead-bismuth reactor cores.

     

  • loading
  • [1]
    MIHARA T, TANAKA Y, ENUMA Y, et al. Feasibility studies on commercialized fast breeder reactor system (3) - HLMC Fast Reactor[C]. Washington: IASMiRT, 2001.
    [2]
    ZHANG J S, LI N. Review of the studies on fundamental issues in LBE corrosion[J]. Journal of Nuclear Materials, 2008, 373(1-3): 351-377. doi: 10.1016/j.jnucmat.2007.06.019
    [3]
    ZHANG J S. A review of steel corrosion by liquid lead and lead–bismuth[J]. Corrosion Science, 2009, 51(6): 1207-1227. doi: 10.1016/j.corsci.2009.03.013
    [4]
    FAZIO C, BALBAUD F. Corrosion phenomena induced by liquid metals in Generation IV reactors[M]//YVON P. Structural Materials for Generation IV Nuclear Reactors. Cambridge: Woodhead Publishing, 2017: 23-74.
    [5]
    ZHANG Y, WANG C L, LAN Z K, et al. Review of thermal-hydraulic issues and studies of lead-based fast reactors[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109625. doi: 10.1016/j.rser.2019.109625
    [6]
    ZHANG Y, ZHANG D L, WANG C L, et al. Oxygen transport analysis in lead-bismuth eutectic coolant for solid-phase oxygen control[J]. Annals of Nuclear Energy, 2021, 154: 108128. doi: 10.1016/j.anucene.2021.108128
    [7]
    TEDMON C S. The effect of oxide volatilization on the oxidation kinetics of Cr and Fe‐Cr alloys[J]. Journal of The Electrochemical Society, 1966, 113(8): 766-768. doi: 10.1149/1.2424115
    [8]
    MARINO A, LIM J, KEIJERS S, et al. Numerical modeling of oxygen mass transfer in a wire wrapped fuel assembly under flowing lead bismuth eutectic[J]. Journal of Nuclear Materials, 2018, 506: 53-62. doi: 10.1016/j.jnucmat.2017.12.017
    [9]
    WANG C L, ZHANG Y, ZHANG D L, et al. Numerical study of oxygen transport characteristics in lead-bismuth eutectic for gas-phase oxygen control[J]. Nuclear Engineering and Technology, 2021, 53(7): 2221-2228. doi: 10.1016/j.net.2021.01.031
    [10]
    苏光辉, 秋穗正, 田文喜. 核动力系统热工水力计算方法[M]. 北京: 清华大学出版社, 2013: 221-226.
    [11]
    MARTINELLI L, BALBAUD-CÉLÉRIER F, TERLAIN A, et al. Oxidation mechanism of a Fe–9Cr–1Mo steel by liquid Pb–Bi eutectic alloy (Part I)[J]. Corrosion Science, 2008, 50(9): 2523-2536. doi: 10.1016/j.corsci.2008.06.050
    [12]
    MARTINELLI L, BALBAUD-CÉLÉRIER F, TERLAIN A, et al. Oxidation mechanism of an Fe–9Cr–1Mo steel by liquid Pb–Bi eutectic alloy at 470°C (Part II)[J]. Corrosion Science, 2008, 50(9): 2537-2548. doi: 10.1016/j.corsci.2008.06.051
    [13]
    MARTINELLI L, BALBAUD-CÉLÉRIER F, PICARD G, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb–Bi eutectic alloy (Part III)[J]. Corrosion Science, 2008, 50(9): 2549-2559. doi: 10.1016/j.corsci.2008.06.049
    [14]
    MARTINELLI L, BALBAUD-CÉLÉRIER F. Modelling of the oxide scale formation on Fe-Cr steel during exposure in liquid lead-bismuth eutectic in the 450–600°C temperature range[J]. Materials and Corrosion, 2011, 62(6): 531-542. doi: 10.1002/maco.201005871
    [15]
    BACKHAUS‐RICOULT M, DIECKMANN R. Defects and cation diffusion in magnetite (VII): Diffusion controlled formation of magnetite during reactions in the iron‐oxygen system[J]. Berichte der Bunsengesellschaft für Physikalische Chemie, 1986, 90(8): 690-698.
    [16]
    DIECKMANN R. Defects and cation diffusion in magnetite (IV): Nonstoichiometry and point defect structure of magnetite (Fe3δO4) [J]. Berichte der Bunsengesellschaft für Physikalische Chemie, 1982, 86(2): 112-118.
    [17]
    Fazio C, Sobolev V P, Aerts A, et al. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies – 2015 edition[R]. Organisation for Economic Co-Operation and Development, 2015.
    [18]
    HE B X, NING L, MINEEV M. A kinetic model for corrosion and precipitation in non-isothermal LBE flow loop[J]. Journal of Nuclear Materials, 2001, 297(2): 214-219. doi: 10.1016/S0022-3115(01)00603-1
    [19]
    CHEN T Y, MOCCARI A, MACDONALD D D. Development of controlled hydrodynamic techniques for corrosion testing[J]. Corrosion, 1992, 48(3): 239-255. doi: 10.5006/1.3315930
    [20]
    SILVERMAN D C. Technical note: On estimating conditions for simulating velocity-sensitive corrosion in the rotating cylinder electrode[J]. Corrosion, 1999, 55(12): 1115-1118. doi: 10.5006/1.3283948
    [21]
    SCHROER C, WEDEMEYER O, SKRYPNIK A, et al. Corrosion kinetics of Steel T91 in flowing oxygen-containing lead–bismuth eutectic at 450°C[J]. Journal of Nuclear Materials, 2012, 431(1-3): 105-112. doi: 10.1016/j.jnucmat.2011.11.014
    [22]
    TSISAR V, SCHROER C, WEDEMEYER O, et al. Characterization of corrosion phenomena and kinetics on T91 ferritic/martensitic steel exposed at 450 and 550 °C to flowing Pb-Bi eutectic with 10−7 mass% dissolved oxygen[J]. Journal of Nuclear Materials, 2017, 494: 422-438. doi: 10.1016/j.jnucmat.2017.07.031
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (3354) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return