Citation: | Chen Jing, Lu Yanzhen, Jiang Hao, Lin Weiqing, Xu Yong. Anomaly Detection of Core Self-Powered Neutron Detector Based on Twin Model[J]. Nuclear Power Engineering, 2023, 44(3): 210-216. doi: 10.13832/j.jnpe.2023.03.0210 |
[1] |
李树成,胡铸萱. CAP 1400核电厂堆芯钒自给能中子探测器设计与验证[J]. 核电子学与探测技术,2018, 38(5): 699-702.
|
[2] |
黄有骏,李文平,杨戴博,等. 华龙一号堆芯中子注量率测量系统自给能中子探测器关键参数研究[J]. 核动力工程,2020, 41(S2): 45-49. doi: 10.13832/j.jnpe.2020.S2.0045
|
[3] |
YELLAPU V S, TIWARI A P, DEGWEKER S B. Application of data reconciliation for fault detection and isolation of in-core self-powered neutron detectors using iterative principal component test[J]. Progress in Nuclear Energy, 2017, 100: 326-343. doi: 10.1016/j.pnucene.2017.04.017
|
[4] |
GAUTAM S, TAMBOLI P K, ROY K, et al. Sensors incipient fault detection and isolation of nuclear power plant using extended Kalman filter and Kullback–Leibler divergence[J]. ISA Transactions, 2019, 92: 180-190. doi: 10.1016/j.isatra.2019.02.011
|
[5] |
YELLAPU V S, ZHANG W D, VAJPAYEE V, et al. A multiscale data reconciliation approach for sensor fault detection[J]. Progress in Nuclear Energy, 2021, 135: 103707. doi: 10.1016/j.pnucene.2021.103707
|
[6] |
CHATTERJEE S, SURWASE S K, BHUSHAN M, et al. Cluster statistics based normalization for online fault diagnosis of self-powered neutron detectors[C]//2017 International Conference on Information, Communication, Instrumentation and Control (ICICIC). Indore: IEEE, 2017: 1-6.
|
[7] |
ZAREI M. A Kalman filtering of the Self-Powered Neutron Detector current to determine excess reactivity[J]. Radiation Physics and Chemistry, 2021, 188: 109602. doi: 10.1016/j.radphyschem.2021.109602
|
[8] |
VOLODIN V S, TOLOKONSKII A O. Concept of instrumentation of digital twins of nuclear power plants units as observers for digital NPP I&C system[C]//8th International Conference on Mathematical Modeling in Physical Science. Bratislava: IOP, 2019: 012083.
|
[9] |
KOCHUNAS B, HUAN X. Digital twin concepts with uncertainty for nuclear power applications[J]. Energies, 2021, 14(14): 4235. doi: 10.3390/en14144235
|
[10] |
NGUYEN T N, PONCIROLI R, BRUCK P, et al. A digital twin approach to system-level fault detection and diagnosis for improved equipment health monitoring[J]. Annals of Nuclear Energy, 2022, 170: 109002. doi: 10.1016/j.anucene.2022.109002
|
[11] |
胡梦岩,孔繁丽,余大利,等. 数字孪生在先进核能领域中的关键技术与应用前瞻[J]. 电网技术,2021, 45(7): 2514-2522. doi: 10.13335/j.1000-3673.pst.2021.0335
|
[12] |
AKS A,JSK B,LV B. Digital twin in energy industry: Proposed robust digital twin for power plant and other complex capital-intensive large engineering systems[J]. Energy Reports, 2022, 8: 3704-3726. doi: 10.1016/j.egyr.2022.02.305
|
[13] |
LIN L Y, ATHE P, ROUXELIN P, et al. Digital-twin-based improvements to diagnosis, prognosis, strategy assessment, and discrepancy checking in a nearly autonomous management and control system[J]. Annals of Nuclear Energy, 2022, 166: 108715. doi: 10.1016/j.anucene.2021.108715
|
[14] |
刘皓璐,邵建伟,王雪,等. 基于数字孪生的配电自动化终端设备状态评价与故障预判[J]. 电网技术,2022, 46(4): 1605-1613. doi: 10.13335/j.1000-3673.pst.2021.0661
|
[15] |
张西宁,张雯雯,周融通,等. 采用单类随机森林的异常检测方法及应用[J]. 西安交通大学学报,2020, 54(2): 1-8,157.
|