Citation: | Wang Xinyu, Zhang Bin, Chen Yixue. Research on Simulation of Neutron Transport with Thick Diffusion Limit in Curved Meshes[J]. Nuclear Power Engineering, 2023, 44(4): 41-48. doi: 10.13832/j.jnpe.2023.04.0041 |
[1] |
GRAZIANI F. Computational methods in transport[M]. New York: Springer, 2004: 527-530.
|
[2] |
ATZENI S, MEYER-TER-VEHN J. 惯性聚变物理[M]. 沈百飞, 译. 北京: 科学出版社, 2008: 162-196.
|
[3] |
LEWIS E E, MILLER W F JR. Computational methods of neutron transport[M]. La Grange Park: American Nuclear Society, 1993: 116-153.
|
[4] |
LATHROP K D. Spatial differencing of the transport equation: positivity vs. accuracy[J]. Journal of Computational Physics, 1969, 4(4): 475-498. doi: 10.1016/0021-9991(69)90015-1
|
[5] |
PETROVIC B, HAGHIGHAT A. New directional theta-weighted SN differencing scheme and its application to pressure vessel fluence calculations[C]//Proceedings of Radiation Protection and Shielding Topical Meeting. Falmouth, 1996: 3-10.
|
[6] |
LARSEN E W, ALCOUFFE R E. Linear characteristic method for spatially discretizing the discrete ordinates equations in (X, Y)-geometry: LA-UR-81-101[R]. Los Alamos: Los Alamos Scientific Laboratory, 1981.
|
[7] |
AZMY Y Y. Arbitrarily high order characteristic methods for solving the neutron transport equation[J]. Annals of National Energy, 1992, 19(10-12): 593-606. doi: 10.1016/0306-4549(92)90004-U
|
[8] |
REED W H, HILL T R. Triangular mesh methods for the neutron transport equation: LA-UR-73-479[R]. Los Alamos: Los Alamos Scientific Laboratory, 1973.
|
[9] |
MOREL J E, DENDY J E JR, WAREING T A. Diffusion-accelerated solution of the two-dimensional Sn equations with bilinear-discontinuous differencing[J]. Nuclear Science and Engineering, 1993, 115(4): 304-319. doi: 10.13182/NSE93-A24061
|
[10] |
MOREL J E, WAREING T A, SMITH K. A linear-discontinuous spatial differencing scheme for Sn radiative transfer calculations[J]. Journal of Computational Physics, 1996, 128(2): 445-462. doi: 10.1006/jcph.1996.0223
|
[11] |
WANG Y Q, RAGUSA J C. A high-order discontinuous Galerkin method for the SN transport equations on 2D unstructured triangular meshes[J]. Annals of Nuclear Energy, 2009, 36(7): 931-939. doi: 10.1016/j.anucene.2009.03.002
|
[12] |
WANG Y Q, RAGUSA J C. On the convergence of DGFEM applied to the discrete ordinates transport equation for structured and unstructured triangular meshes[J]. Nuclear Science and Engineering, 2009, 163(1): 56-72. doi: 10.13182/NSE08-72
|
[13] |
WANG Y Q, RAGUSA J C. Standard and goal-oriented adaptive mesh refinement applied to radiation transport on 2D unstructured triangular meshes[J]. Journal of Computational Physics, 2011, 230(3): 763-788. doi: 10.1016/j.jcp.2010.10.018
|
[14] |
HACKEMACK M W, RAGUSA J C. Quadratic serendipity discontinuous finite element discretization for SN transport on arbitrary polygonal grids[J]. Journal of Computational Physics, 2018, 374: 188-212. doi: 10.1016/j.jcp.2018.05.032
|
[15] |
洪振英,袁光伟,魏军侠. 球几何中子输运保正线性间断有限元格式[J]. 强激光与粒子束,2017, 29(7): 076001. doi: 10.11884/HPLPB201729.160320
|
[16] |
LARSEN E W, MOREL J E, MILLER W F. Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes[J]. Journal of Computational Physics, 1987, 69(2): 283-324. doi: 10.1016/0021-9991(87)90170-7
|
[17] |
CHEN Y X, ZHANG B, ZHANG L, et al. ARES: a parallel discrete ordinates transport code for radiation shielding applications and reactor physics analysis[J]. Science and Technology of Nuclear Installations, 2017, 2017: 2596727.
|
[18] |
ANDERSON R, ANDREJ J, BARKER A, et al. MFEM: a modular finite element methods library[J]. Computers & Mathematics with Applications, 2021, 81: 42-74.
|
[19] |
SCHUNERT S, AZMY Y. Comparison of spatial discretization methods for solving the SN equations using a three-dimensional method of manufactured solutions benchmark suite with escalating order of nonsmoothness[J]. Nuclear Science and Engineering, 2015, 180(1): 1-29. doi: 10.13182/NSE14-77
|
[20] |
KAVENOKY, STEPANEK J, SCHMIDT F. Transport theory and advanced reactor calculations: IAEA-TECDOC-254[R]. Vienna: International Atomic Energy Agency, 1981.
|