Advance Search
Volume 44 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Yin Yuan, Feng Simin, Pang Bo, Xi Yanyan, Zhang Yuxiang, Fu Xiangang. Development of Dimensionless Rod-bundle CHF Correlation Based on Stepwise Regression and Determination of DNBR Limit[J]. Nuclear Power Engineering, 2023, 44(4): 72-78. doi: 10.13832/j.jnpe.2023.04.0072
Citation: Yin Yuan, Feng Simin, Pang Bo, Xi Yanyan, Zhang Yuxiang, Fu Xiangang. Development of Dimensionless Rod-bundle CHF Correlation Based on Stepwise Regression and Determination of DNBR Limit[J]. Nuclear Power Engineering, 2023, 44(4): 72-78. doi: 10.13832/j.jnpe.2023.04.0072

Development of Dimensionless Rod-bundle CHF Correlation Based on Stepwise Regression and Determination of DNBR Limit

doi: 10.13832/j.jnpe.2023.04.0072
  • Received Date: 2022-08-19
  • Rev Recd Date: 2022-09-02
  • Publish Date: 2023-08-15
  • At present, the empirical correlations of critical heat flux (CHF) of advanced PWR rod-bundles at home and abroad generally have the common problems of complex mathematical form, numerous independent variable coefficients and lack of physical significance. In this study, based on 485 rod-bundle CHF data points of 5×5 PWR rod-bundles selected from the rod bundle CHF database of American Electric Power Research Institute (EPRI), a new dimensionless CHF correlation is developed with stepwise regression analysis. Considering the cold wall effect and axial non-uniform heating effect of the guide tube, the average value of the ratio M/P between the measured CHF and the predicted CHF is 0.998, the root mean square error is 0.0546, and the standard deviation is 0.0546. Based on the grouping method, the limit of the 95/95 departure from nucleate boiling ratio (DNBR) of the correlation is determined to be 1.16.

     

  • loading
  • [1]
    CHENG X, MÜLLER U. Review on critical heat flux in water cooled reactors: FZKA-6825[R]. Karlsruhe: Forschungszentrum Karlsruhe, 2003.
    [2]
    张玉相,席炎炎,庞铮铮,等. CHF关系式开发与DNBR限值确定方法研究[J]. 核动力工程,2016, 37(5): 130-134.
    [3]
    TONG L S, WEISMAN J. Thermal analysis of pressurized water reactors[M]. 3rd ed. La Grange Park: American Nuclear Society, 1996: 478-490.
    [4]
    REDDY D G, FIGHETTI C F. Parametric study of CHF data Volume 2. A generalized subchannel CHF correlation for PWR and BWR fuel assemblies. Final report: EPRI-NP-2609-Vol. 2[R]. New York: Columbia University, 1983.
    [5]
    刘伟. 压水堆燃料组件临界热流密度关系式的开发、评估及应用[D]. 西安: 西安交通大学, 2013.
    [6]
    FIGHETTI C F, REDDY D G. Parametric study of CHF data. Volume 3, Part 1. Critical heat flux data. Final report: EPRI-NP-2609-Vol. 3-Pt. 1[R]. New York: Columbia University, 1982.
    [7]
    STEWART C W, WHEELER C L, CENA R J, et al. COBRA-IV: the model and the method: BNWL-2214[R]. Richland: Pacific Northwest Laboratories, 1977.
    [8]
    DRAPER N R, SMITH H. Applied regression analysis[M]. New York: John Wiley & Sons Inc, 1981.
    [9]
    WEISMAN J, PEI B S. Prediction of critical heat flux in flow boiling at low qualities[J]. International Journal of Heat and Mass Transfer, 1983, 26(10): 1463-1477. doi: 10.1016/S0017-9310(83)80047-7
    [10]
    LEE C H, MUDAWWAR I. A mechanistic critical heat flux model for subcooled flow boiling based on local bulk flow conditions[J]. International Journal of Multiphase Flow, 1988, 14(6): 711-728. doi: 10.1016/0301-9322(88)90070-5
    [11]
    TONG L S, TANG Y S. Boiling heat transfer and two-phase flow[M]. 2nd ed. Washington: Taylor & Francis Ltd. , 1997: 333.
    [12]
    GROENEVELD D C, CHENG S C, DOAN T. 1986 AECL-UO critical heat flux lookup table[J]. Heat Transfer Engineering, 1986, 7(1-2): 46-62. doi: 10.1080/01457638608939644
    [13]
    ROSAL E R, CERMAK J O, TONG L S, et al. High pressure rod bundle DNB data with axially non-uniform heat flux[J]. Nuclear Engineering and Design, 1974, 31(1): 1-20. doi: 10.1016/0029-5493(74)90129-0
    [14]
    刘伟, 杜思佳, 张渝, 等. 一种基于分组法的CHF关系式DNBR限值统计学确定方法: 中国, 201910887222.2[P]. 2020-01-24.
    [15]
    国家质量技术监督局. 数据的统计处理和解释正态性检验: GB/T 4882-2001[S]. 北京: 中国标准出版社, 2004:14-17.
    [16]
    OWEN D B. Factors for one-sided tolerance limits and for variables sampling plans: NSA-17-023849[R]. Albuquerque: Sandia Corporation, 1963.
    [17]
    NATRELLA M G. Experimental statistics[M]. Washington: NBS Handbook 91 National Bureau Standards, 1963: 31.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article Metrics

    Article views (1023) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return