Advance Search
Volume 44 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Chen Zehan, Chen Xingwei, Dai Ye, Zou Yang. Study on the Effect of Inclination Angle on the Natural Convection of Molten Salt in Heat Pipe Cooled Molten Salt Reactor Core[J]. Nuclear Power Engineering, 2023, 44(4): 79-87. doi: 10.13832/j.jnpe.2023.04.0079
Citation: Chen Zehan, Chen Xingwei, Dai Ye, Zou Yang. Study on the Effect of Inclination Angle on the Natural Convection of Molten Salt in Heat Pipe Cooled Molten Salt Reactor Core[J]. Nuclear Power Engineering, 2023, 44(4): 79-87. doi: 10.13832/j.jnpe.2023.04.0079

Study on the Effect of Inclination Angle on the Natural Convection of Molten Salt in Heat Pipe Cooled Molten Salt Reactor Core

doi: 10.13832/j.jnpe.2023.04.0079
  • Received Date: 2022-08-22
  • Accepted Date: 2022-10-11
  • Rev Recd Date: 2022-09-30
  • Publish Date: 2023-08-15
  • The inclination angle of heat pipe-cooled molten salt reactor (MSR) core has an important influence on the core temperature distribution and local hot spots. In order to obtain the natural convection heat transfer characteristics of molten salt in the core at different inclination angles, optimize the core design and improve the system safety, the three-dimensional modeling of the core is carried out, and the temperature field and flow field of the natural convection of molten salt in the core are analyzed for both horizontal and vertical placement by numerical simulation with the software Fluent. At the same time, the influence of core inclination angle change on the core temperature field and local hot spots is discussed. The results show that the local hot spots always appear in the upper part of the core, and the temperature field and flow field of the core are more unstable when the core is placed horizontally than vertically. When the inclination angle is in the range of 5°-10°, the local hot spot temperature is the highest, and the hot spot temperature is the lowest when the core is vertical. The simulation results show the natural convection characteristics of molten salt in the core, and provide a reference for the thermal design of the heat pipe-cooled MSR.

     

  • loading
  • [1]
    WANG X, ZHANG Q, ZHUANG K, et al. Neutron physics of the liquid‐fuel heat‐pipe reactor concept with molten salt fuel—Static calculations[J]. International Journal of Energy Research, 2019, 43(14): 7852-7865.
    [2]
    LIU M H, ZHANG D L, WANG C L, et al. Experimental study on heat transfer performance between fluoride salt and heat pipes in the new conceptual passive residual heat removal system of molten salt reactor[J]. Nuclear Engineering and Design, 2018, 339: 215-224. doi: 10.1016/j.nucengdes.2018.09.015
    [3]
    PETRUCCI M, FAGHRI A. Multiple evaporator and condenser loop thermosyphon system for passive cooling of liquid-fuel molten salt nuclear reactors[J]. Nuclear Engineering and Design, 2020, 370: 110936. doi: 10.1016/j.nucengdes.2020.110936
    [4]
    于世和,孙强,赵恒,等. 火星熔盐堆堆芯概念设计[J]. 核技术,2020, 43(5): 67-72. doi: 10.11889/j.0253-3219.2020.hjs.43.050603
    [5]
    CUI D Y, DAI Y, CAI X Z, et al. Preconceptual nuclear design of a 50 kWth heat pipe cooled micro molten salt reactor (micro-MSR)[J]. Progress in Nuclear Energy, 2021, 134: 103670. doi: 10.1016/j.pnucene.2021.103670
    [6]
    胡光,崔德阳,卢林远,等. 1MWth火星表面热管熔盐堆堆芯初步中子学设计[J]. 核技术,2021, 44(12): 97-106. doi: 10.11889/j.0253-3219.2021.hjs.44.120603
    [7]
    余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019, 40(4): 1-8. doi: 10.13832/j.jnpe.2019.04.0001
    [8]
    李华琪,江新标,陈立新,等. 空间堆热管输热能力分析[J]. 原子能科学技术,2015, 49(1): 89-95. doi: 10.7538/yzk.2015.49.01.0089
    [9]
    TENG W F, WANG X Y, ZHU Y Z. Experimental investigations on start-up and thermal performance of sodium heat pipe under swing conditions[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119505. doi: 10.1016/j.ijheatmasstransfer.2020.119505
    [10]
    JANZ G J, GARDNER G L, KREBS U, et al. Molten salts: volume 4, part 1, fluorides and mixtures electrical conductance, density, viscosity, and surface tension data[J]. Journal of Physical and Chemical Reference Data, 1974, 3(1): 1-115. doi: 10.1063/1.3253134
    [11]
    CHEN X W, ZOU Y, CHEN Z H, et al. Effect of core configuration on natural convection and heat transfer in heat pipe cooled micro-MSRs[J]. Nuclear Engineering and Design, 2022, 395: 111839. doi: 10.1016/j.nucengdes.2022.111839
    [12]
    PEROVIĆ B D, KLIMENTA J L, TASIĆ D S, et al. Modeling the effect of the inclination angle on natural convection from a flat plate: the case of a photovoltaic module[J]. Thermal Science, 2017, 21(2): 925-938. doi: 10.2298/TSCI140821059P
    [13]
    NIAZI S, BENI M N. Numerical study of the effect of a nanofluid with nanoparticles of nonuniform size on natural convection in an inclined enclosure[J]. Nanoscience and Technology:An International Journal, 2017, 8(4): 261-308. doi: 10.1615/NanoSciTechnolIntJ.v8.i4.10
    [14]
    LU S H, ZHU J Q, GAO D Y, et al. Lattice Boltzmann simulation for natural convection of supercritical CO2 in an inclined square cavity[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2020, 30(7): 3635-3652. doi: 10.1108/HFF-08-2019-0641
    [15]
    ELBAKHSHAWANGY H F. Effect of tilting angle on natural convection heat transfer from a cylinder suspended in stagnant water[J]. Arab Journal of Nuclear Sciences and Applications, 2020, 53(2): 56-67. doi: 10.21608/ajnsa.2020.15243.1244
    [16]
    ROY K, DAS B, DUTTA S. Natural convective heat transfer from an inclined isothermal fin array[C]// Advances in Mechanical Engineering. Singapore: Select Proceedings of ICRIDME 2018. Springer Singapore, 2020: 1055-1068.
    [17]
    ASHJAEE M, YOUSEFI T. Experimental study of free convection heat transfer from horizontal isothermal cylinders arranged in vertical and inclined arrays[J]. Heat Transfer Engineering, 2007, 28(5): 460-471. doi: 10.1080/01457630601165822
    [18]
    贾笃雨. 高温熔盐在圆管表面自然对流换热的数值研究[D]. 天津: 河北工业大学, 2016.
    [19]
    REYMOND O, MURRAY D B, O’DONOVAN T S. Natural convection heat transfer from two horizontal cylinders[J]. Experimental Thermal and Fluid Science, 2008, 32(8): 1702-1709. doi: 10.1016/j.expthermflusci.2008.06.005
    [20]
    WANG C L, QIN H, ZHANG D L, et al. Numerical investigation of natural convection characteristics of a heat pipe-cooled passive residual heat removal system for molten salt reactors[J]. Nuclear Science and Techniques, 2020, 31(7): 87-95. doi: 10.1007/s41365-020-00780-z
    [21]
    YODER G L JR, HEATHERLY D W, WILLIAMS D F, et al. Liquid fluoride salt experimentation using a small natural circulation cell: ORNL/TM-2014/56[R]. Oak Ridge: Oak Ridge National Lab, 2014.
    [22]
    杨世铭, 陶文铨. 传热学[M]. 第四版. 北京: 高等教育出版社, 2006: 267-269.
    [23]
    YODER G L JR. Examination of liquid fluoride salt heat transfer[C]//Proceedings of the ICAPP 2014. Charlotte, 2014: 6-9
    [24]
    TSUBOUCHI T, MASUDA H. Heat transfer by natural convection from horizontal cylinders at low Rayleigh numbers[R]. Tohoku: Tohoku University, 1967, 19: 205-219
    [25]
    CHURCHILL S W, CHU H H S. Correlating equations for laminar and turbulent free convection from a horizontal cylinder[J]. International Journal of Heat and Mass Transfer, 1975, 18(9): 1049-1053. doi: 10.1016/0017-9310(75)90222-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(2)

    Article Metrics

    Article views (245) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return