Advance Search
Volume 44 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Pu Songmao, Huang Jiajun, Sun Peiwei, Wei Xinyu. Research on Cascade Control Method of Electric Power of NUSTER-100[J]. Nuclear Power Engineering, 2023, 44(4): 154-162. doi: 10.13832/j.jnpe.2023.04.0154
Citation: Pu Songmao, Huang Jiajun, Sun Peiwei, Wei Xinyu. Research on Cascade Control Method of Electric Power of NUSTER-100[J]. Nuclear Power Engineering, 2023, 44(4): 154-162. doi: 10.13832/j.jnpe.2023.04.0154

Research on Cascade Control Method of Electric Power of NUSTER-100

doi: 10.13832/j.jnpe.2023.04.0154
  • Received Date: 2022-08-23
  • Rev Recd Date: 2023-01-13
  • Publish Date: 2023-08-15
  • The heat pipe cooled reactor (hereinafter referred to as heat pipe reactor) has the design concept of solid-state reactor, and the heat is passively transferred out of the core through heat pipes. It has the advantages of simple structure, high safety, low noise, compact structure and long working time. In this paper, a 100 kW silent heat pipe reactor (NUSTER-100) is taken as the research object, and the nonlinear dynamic model is built based on MATLAB/Simulink platform. The transfer function model is obtained by linearization based on perturbation theory. Based on the analysis of dynamic characteristics, a cascade control method of electric power is proposed, in which the inner loop is the core power regulation and the outer loop is the electric power control. Based on the transfer function between reactivity and nuclear power, and the transfer function between nuclear power and electric power, an electric power cascade control system is designed, and its nonlinear problem is solved by gain scheduling. The simulation results show that the cascade control system can meet the requirements of control performance and realize the safe and reliable operation of nuclear reactor.

     

  • loading
  • [1]
    GROVER G M, COTTER T P, ERICKSON G F. Erratum: structures of very high thermal conductance[J]. Journal of Applied Physics, 1964, 35(10): 3072. doi: 10.1063/1.1713185
    [2]
    余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019, 40(4): 1-8. doi: 10.13832/j.jnpe.2019.04.0001
    [3]
    ZOHURI B. Heat pipe applications in fission driven nuclear power plants[M]. Cham: Springer, 2019: 117.
    [4]
    钟睿诚,马誉高,邓坚,等. 热管堆多反馈效应下的启堆特性研究[J]. 核动力工程,2021, 42(S2): 104-108. doi: 10.13832/j.jnpe.2021.S2.0104
    [5]
    马誉高,杨小燕,刘余,等. MW级热管冷却反应堆反馈特性及启堆过程研究[J]. 原子能科学技术,2021, 55(S2): 213-220.
    [6]
    YAN B H, WANG C, LI L G. The technology of micro heat pipe cooled reactor: a review[J]. Annals of Nuclear Energy, 2020, 135: 106948. doi: 10.1016/j.anucene.2019.106948
    [7]
    孙浩沩,孙培伟. 基于热管冷却反应堆仿真系统的功率调节系统初步设计[J]. 仪器仪表用户,2022, 29(3): 83-87,105. doi: 10.3969/j.issn.1671-1041.2022.03.019
    [8]
    TANG S M, LIU X, WANG C L, et al. Thermal-electrical coupling characteristic analysis of the heat pipe cooled reactor with static thermoelectric conversion[J]. Annals of Nuclear Energy, 2021, 168: 108870.
    [9]
    DU X N, TAO Y S, ZHENG Y Q, et al. Reactor core design of UPR-s: a nuclear reactor for silence thermoelectric system NUSTER[J]. Nuclear Engineering and Design, 2021, 383: 111404. doi: 10.1016/j.nucengdes.2021.111404
    [10]
    张建民, 孙培伟, 姜晶. 核反应堆控制[M]. 第二版. 北京: 中国原子能出版社, 2016: 62-63.
    [11]
    杨世铭, 陶文铨. 传热学[M]. 第四版. 北京: 高等教育出版社, 2006: 52-54.
    [12]
    WANG C L, TANG S M, LIU X, et al. Experimental study on heat pipe thermoelectric generator for industrial high temperature waste heat recovery[J]. Applied Thermal Engineering, 2020, 175: 115299. doi: 10.1016/j.applthermaleng.2020.115299
    [13]
    胡寿松. 自动控制原理[M]. 第四版. 北京: 科学出版社, 2001: 460.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Article Metrics

    Article views (120) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return