Advance Search
Volume 44 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Liu Dong, Tang Lei, An Ping, Zhang Bin, Jiang Yong. The Deep Learning Method to Search Effective Multiplication Factor of Nuclear Reactor Directly[J]. Nuclear Power Engineering, 2023, 44(5): 6-14. doi: 10.13832/j.jnpe.2023.05.0006
Citation: Liu Dong, Tang Lei, An Ping, Zhang Bin, Jiang Yong. The Deep Learning Method to Search Effective Multiplication Factor of Nuclear Reactor Directly[J]. Nuclear Power Engineering, 2023, 44(5): 6-14. doi: 10.13832/j.jnpe.2023.05.0006

The Deep Learning Method to Search Effective Multiplication Factor of Nuclear Reactor Directly

doi: 10.13832/j.jnpe.2023.05.0006
  • Received Date: 2022-10-11
  • Accepted Date: 2022-11-27
  • Rev Recd Date: 2022-11-27
  • Publish Date: 2023-10-13
  • It's a basic problem in the reactor criticality calculation to determine the effective multiplication factor keff. At present, the source iteration method is widely used in the industry. Based on the theory of artificial intelligence deep learning method to solve differential equations, this paper puts forward a new method, which takes keff and the weights of neural network neurons as machine learning optimization parameters, calculates the weighted loss function formed by substituting neural network functions into neutron differential equations, and simultaneously approaches neutron fluence rate and searches for keff directly. The mathematical form of eigenvalue of neutron differential equation, the setting method of initial neural network, the weighting factor of loss function, convergence criterion and other important factors affecting deep learning performance and the corresponding performance improvement schemes are discussed. The correctness of the method and the effectiveness of the learning performance improvement schemes are verified by numerical calculation of various examples. The results have explored a new technical way to calculate the keff of nuclear reactors, which is an important scientific problem in neutron physics.

     

  • loading
  • [1]
    谢仲生, 曹良志, 张少泓. 核反应堆物理分析[M]. 第五版. 西安: 西安交通大学出版社, 2020: 69-90.
    [2]
    谢仲生, 邓力. 中子输运理论数值计算方法[M]. 西安: 西北工业大学出版社, 2005: 11-50.
    [3]
    XIE Y C, WANG Y H, MA Y, et al. Neural network based deep learning method for multi-dimensional neutron diffusion problems with novel treatment to boundary[J]. Journal of Nuclear Engineering, 2021, 2(4): 533-552. doi: 10.3390/jne2040036
    [4]
    RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
    [5]
    刘东,罗琦,唐雷,等. 基于PINN深度机器学习技术求解多维中子学扩散方程[J]. 核动力工程,2022, 43(2): 1-8. doi: 10.13832/j.jnpe.2022.02.0001
    [6]
    GALIB S M, BHOWMIK P K, AVACHAT A V, et al. A comparative study of machine learning methods for automated identification of radioisotopes using NaI gamma-ray spectra[J]. Nuclear Engineering and Technology, 2021, 53(12): 4072-4079. doi: 10.1016/j.net.2021.06.020
    [7]
    周蜀林. 偏微分方程[M]. 北京: 北京大学出版社, 2005: 1-16.
    [8]
    HAGAN M T, DEMUTH H B, BEALE M H, et al. Neural network design[M]. 2nd ed. Oklahoma: Martin Hagan, 2014: (2-1)-(2-25).
    [9]
    BYRD R H, GILBERT J C, NOCEDAL J. A trust region method based on interior point techniques for nonlinear programming[J]. Mathematical Programming, 2000, 89(1): 149-185. doi: 10.1007/PL00011391
    [10]
    DUMOUCHEL W H, O'BRIEN F L. Integrating a robust option into a multiple regression computing environment[C]//Computer Science and Statistics: Proceedings of the 21st Symposium on the Interface. Alexandria, VA: American Statistical Association, 1989: 41-48.
    [11]
    KINGMA D P, BA J. Adam: a method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations. San Diego, 2014: 1-15.
    [12]
    杨强, 张宇, 戴文渊, 等. 迁移学习[M]. 北京: 机械工业出版社, 2020: 2-79.
    [13]
    AN P, MA Y Q, XIAO P, et al. Development and validation of reactor nuclear design code CORCA-3D[J]. Nuclear Engineering and Technology, 2019, 51(7): 1721-1728. doi: 10.1016/j.net.2019.05.015
    [14]
    DOWNAR T, XU Y, SEKER V. PARCS v3.0 US NRC core neutronics simulator theory manual[M]. Rockville, MD: US NRC, 2012: 5-98.
    [15]
    卢皓亮,吴宏春,曹良志,等. 中子输运方程的三角形节块SN方法研究[J]. 核动力工程,2006, 27(5): 6-11. doi: 10.3969/j.issn.0258-0926.2006.05.002
    [16]
    杜书华. 输运问题的计算机模拟[M]. 长沙: 湖南科学技术出版社, 1988: 130-150, 304-345.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(6)

    Article Metrics

    Article views (1721) PDF downloads(214) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return