Citation: | Li Chengyuan, Li Meifu, Qiu Zhifang. Research on Interpretable Diagnosis Method of Reactor Accidents Based on Representation Extraction[J]. Nuclear Power Engineering, 2023, 44(5): 201-209. doi: 10.13832/j.jnpe.2023.05.0201 |
[1] |
LIN L Y, ATHE P, ROUXELIN P, et al. Development and assessment of a nearly autonomous management and control system for advanced reactors[J]. Annals of Nuclear Energy, 2021, 150: 107861. doi: 10.1016/j.anucene.2020.107861
|
[2] |
AYODEJI A, LIU Y K, XIA H. Knowledge base operator support system for nuclear power plant fault diagnosis[J]. Progress in Nuclear Energy, 2018, 105: 42-50. doi: 10.1016/j.pnucene.2017.12.013
|
[3] |
LEE G, LEE S J, LEE C. A convolutional neural network model for abnormality diagnosis in a nuclear power plant[J]. Applied Soft Computing, 2021, 99: 106874. doi: 10.1016/j.asoc.2020.106874
|
[4] |
WANG H, PENG M J, HINES J W, et al. A hybrid fault diagnosis methodology with support vector machine and improved particle swarm optimization for nuclear power plants[J]. ISA Transactions, 2019, 95: 358-371. doi: 10.1016/j.isatra.2019.05.016
|
[5] |
LI J K, LIN M. Ensemble learning with diversified base models for fault diagnosis in nuclear power plants[J]. Annals of Nuclear Energy, 2021, 158: 108265. doi: 10.1016/j.anucene.2021.108265
|
[6] |
MA J P, JIANG J. Applications of fault detection and diagnosis methods in nuclear power plants: A review[J]. Progress in Nuclear Energy, 2011, 53(3): 255-266. doi: 10.1016/j.pnucene.2010.12.001
|
[7] |
JIANG B T, ZHOU J, HUANG X B. Artificial neural networks in condition monitoring and fault diagnosis of nuclear power plants: a concise review[C]//International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2020, 83778: V002T08A032.
|
[8] |
HU G, ZHOU T T, LIU Q F. Data-driven machine learning for fault detection and diagnosis in nuclear power plants: a review[J]. Frontiers in Energy Research, 2021, 9: 663296. doi: 10.3389/fenrg.2021.663296
|
[9] |
MAITLO A A, LIU Y K, LAKHAN M N, et al. Recent advances in nuclear power plant for fault detection and diagnosis-a review[J]. Journal of Critical Reviews, 2020, 7(18): 4340-4349.
|
[10] |
CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 785-794.
|
[11] |
LUNDBERG S M, LEE S I. A unified approach to interpreting model predictions[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017: 4768-4777.
|
[12] |
ZHOU J Y, WU D, DING S H, et al. Research on analysis and modeling methods for LBLOCA in nuclear power plants based on autonomous LOCA analysis platform ARSAC[C]// International Conference on Nuclear Engineering.Los Angeles: American Society of Mechanical Engineers, 2020, 83785: V003T12A047
|
[13] |
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. doi: 10.1023/A:1010933404324
|
[14] |
CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
|
[15] |
BASU A, BARTLETT E B. Detecting faults in a nuclear power plant by using dynamic node architecture artificial neural networks[J]. Nuclear Science and Engineering, 1994, 116(4): 313-325. doi: 10.13182/nse94-a18990
|
[16] |
Li C, Li M, Qiu Z. Post-hoc Interpretability Based Parameter Selection for Data Oriented Nuclear Reactor Accident Diagnosis System[C]//International Conference on Nuclear Engineering. Beijing: American Society of Mechanical Engineers, 2022, 86427: V07BT07A014.
|
[17] |
李航. 统计学习方法[M]. 第二版. 北京: 清华大学出版社, 2019: 28-30.
|
[18] |
VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(86): 2579-2605.
|
[19] |
SHAPLEY L S. A value for n-person games[J]. Contributions to the Theory of Games,1953, 2(28):307-317.
|