Citation: | Yin Chenxin, Jia Haodong, Zhou Zhangjian, Zheng Wenyue. Microstructure and Tensile Properties of ODS-310 Austenitic Steel[J]. Nuclear Power Engineering, 2023, 44(5): 259-266. doi: 10.13832/j.jnpe.2023.05.0259 |
[1] |
BUCKTHORPE D. Introduction to generation IV nuclear reactors[M]//YVON P. Structural Materials for Generation IV Nuclear Reactors. Amsterdam: Elsevier, 2017: 1-22.
|
[2] |
NOVOTNY R, GUZONAS D. Material research for the supercritical water-cooled reactor—summary and open issues[M]//RITTER S. Nuclear Corrosion: Research, Progress and Challenges. Duxford: Woodhead Publishing, 2020: 403-435.
|
[3] |
GUO X L, FAN Y, GAO W H, et al. Corrosion resistance of candidate cladding materials for supercritical water reactor[J]. Annals of Nuclear Energy, 2019, 127: 351-363. doi: 10.1016/j.anucene.2018.12.007
|
[4] |
VORONIN V I. Neutron diffraction study of samples of fuel element claddings made of austenitic steel[J]. Journal of Nuclear Materials, 2021, 547: 152798. doi: 10.1016/j.jnucmat.2021.152798
|
[5] |
HURE J, COURCELLE A, TURQUE I. A micromechanical analysis of swelling-induced embrittlement in neutron-irradiated austenitic stainless steels[J]. Journal of Nuclear Materials, 2022, 565: 153732. doi: 10.1016/j.jnucmat.2022.153732
|
[6] |
WANG M, SUN H Y, ZOU L, et al. Structural evolution of oxide dispersion strengthened austenitic powders during mechanical alloying and subsequent consolidation[J]. Powder Technology, 2015, 272: 309-315. doi: 10.1016/j.powtec.2014.12.008
|
[7] |
RAMAN L, GOTHANDAPANI K, MURTY B S. Austenitic oxide dispersion strengthened steels: a review[J]. Defence Science Journal, 2016, 66(4): 316-322. doi: 10.14429/dsj.66.10205
|
[8] |
RIBIS J, LOZANO-PEREZ S. Nano-cluster stability following neutron irradiation in MA957 oxide dispersion strengthened material[J]. Journal of Nuclear Materials, 2014, 444(1-3): 314-322. doi: 10.1016/j.jnucmat.2013.10.010
|
[9] |
GAO J, CHEN F D, TANG X B, et al. Effects of grain boundary structures on primary radiation damage and radiation-induced segregation in austenitic stainless steel[J]. Journal of Applied Physics, 2020, 128(10): 105304. doi: 10.1063/5.0016404
|
[10] |
GRÄNING T, RIETH M, HOFFMANN J, et al. Production, microstructure and mechanical properties of two different austenitic ODS steels[J]. Journal of Nuclear Materials, 2017, 487: 348-361. doi: 10.1016/j.jnucmat.2017.02.034
|
[11] |
LITVINOV D, CHAUHAN A, GRÄNING T, et al. Microstructure characterization of a novel austenitic ODS steel by transmission electron microscopy[J]. Materialia, 2019, 5: 100176. doi: 10.1016/j.mtla.2018.11.025
|
[12] |
WANG M, ZHOU Z J, SUN H Y, et al. Microstructural observation and tensile properties of ODS-304 austenitic steel[J]. Materials Science and Engineering:A, 2013, 559: 287-292. doi: 10.1016/j.msea.2012.08.099
|
[13] |
ZHOU Z J, SUN S Y, ZOU L, et al. Enhanced strength and high temperature resistance of 25Cr20Ni ODS austenitic alloy through thermo-mechanical treatment and addition of Mo[J]. Fusion Engineering and Design, 2019, 138: 175-182. doi: 10.1016/j.fusengdes.2018.11.020
|
[14] |
GRÄNING T, RIETH M, MÖSLANG A, et al. Investigation of precipitate in an austenitic ODS steel containing a carbon-rich process control agent[J]. Nuclear Materials and Energy, 2018, 15: 237-243. doi: 10.1016/j.nme.2018.05.005
|
[15] |
王曼,周张健,闫志刚,等. ODS-316奥氏体钢显微结构及弥散相的TEM研究[J]. 金属学报,2013, 49(2): 153-158.
|
[16] |
PENG Y Y, YU L M, LIU Y C, et al. Microstructures and tensile properties of an austenitic ODS heat resistance steel[J]. Materials Science and Engineering:A, 2019, 767: 138419. doi: 10.1016/j.msea.2019.138419
|
[17] |
WANG M, ZHOU Z J, SUN H Y, et al. Effects of plastic deformations on microstructure and mechanical properties of ODS-310 austenitic steel[J]. Journal of Nuclear Materials, 2012, 430(1-3): 259-263. doi: 10.1016/j.jnucmat.2012.07.014
|