Advance Search
Su Haozhan, Huang Tao, Zhang Lefu, Chen Kai. Effect of Water Chemistry on the Performance of Alloy 800H in Supercritical Water-cooled Reactor[J]. Nuclear Power Engineering, 2023, 44(5): 267-274. doi: 10.13832/j.jnpe.2023.05.0267
Citation: Su Haozhan, Huang Tao, Zhang Lefu, Chen Kai. Effect of Water Chemistry on the Performance of Alloy 800H in Supercritical Water-cooled Reactor[J]. Nuclear Power Engineering, 2023, 44(5): 267-274. doi: 10.13832/j.jnpe.2023.05.0267

Effect of Water Chemistry on the Performance of Alloy 800H in Supercritical Water-cooled Reactor

doi: 10.13832/j.jnpe.2023.05.0267
  • Received Date: 2022-11-22
  • Rev Recd Date: 2022-12-23
  • Publish Date: 2023-10-13
  • In order to study the influence of water chemistry factors such as temperature and dissolved oxygen on the service performance of cladding materials in supercritical water environment, and to find out the water chemistry control policy of supercritical water-cooled reactor, Alloy 800H was used as the experimental material in this paper, and the corrosion weight gain and slow strain rate tensile curve of the material in supercritical water under different temperature and water chemistry conditions were measured. Increasing the temperature would accelerate the corrosion rate of Alloy 800H, and the corrosion activation energy was about 159 kJ/mol. Increasing the temperature from 550℃ to 650℃, the yield strength of the material did not change significantly, which was about 175 MPa. However, the ratio of yield strength over tensile strength decreased significantly, showing an obvious softness trend of the material. At 650℃, raising the dissolved oxygen concentration from 0 μg·kg–1 to 500 μg·kg–1 resulted in an increase of corrosion weight gain of about 30%, but the water chemistry control method using hydrazine deoxygenation could reduce the corrosion rate of Alloy 800H. The dissolved oxygen concentration did not have a significant effect on the results of slow strain rate tensile testing, mainly because the stress corrosion failure of the material in supercritical water environment is dominated by creep process. The results indicate that appropriate controlling of temperature and dissolved oxygen in supercritical water environment can be helpful to reduce the corrosion rate of Alloy 800H and maintain its mechanical properties.

     

  • [1]
    臧金光,黄彦平. 超临界水冷堆研发进展[J]. 核动力工程,2021, 42(6): 1-4.
    [2]
    ALLEN T R, CHEN Y, REN X, et al. Material performance in supercritical water[M]//KONINGS R J M. Comprehensive Nuclear Materials. Oxford: Elsevier, 2012: 279-326.
    [3]
    ZHENG W Y, GUZONAS D, BOYLE K P, et al. Materials assessment for the Canadian SCWR core concept[J]. JOM, 2016, 68(2): 456-462. doi: 10.1007/s11837-015-1758-0
    [4]
    GUZONAS D, NOVOTNY R, PENTILLA S, et al. Materials and water chemistry for supercritical water-cooled reactors[M]. Cambridge: Woodhead Publishing, 2018: 1-17.
    [5]
    KOLLURI M, PIERICK P T, BAKKER T. Characterization of high temperature tensile and creep–fatigue properties of Alloy 800H for intermediate heat exchanger components of (V)HTRs[J]. Nuclear Engineering and Design, 2015, 284: 38-49. doi: 10.1016/j.nucengdes.2014.12.017
    [6]
    CARVAJAL-ORTIZ R A, PLUGATYR A, SVISHCHEV I M. On the pH control at supercritical water-cooled reactor operating conditions[J]. Nuclear Engineering and Design, 2012, 248: 340-342. doi: 10.1016/j.nucengdes.2012.03.038
    [7]
    GUZONAS D, BROSSEAU F, TREMAINE P, et al. Water chemistry in a supercritical water-cooled pressure tube reactor[J]. Nuclear Technology, 2012, 179(2): 205-219. doi: 10.13182/NT12-A14093
    [8]
    龚宾,黄彦平,姜峨,等. 超临界水冷堆水化学控制及其相关技术研究进展[J]. 核动力工程,2012, 33(6): 132-138.
    [9]
    朱志平,陆海伟,汤雪颖,等. 不同水工况下超临界机组水冷壁管材料的腐蚀特性研究[J]. 中国腐蚀与防护学报,2014, 34(3): 243-248. doi: 10.11902/1005.4537.2013.137
    [10]
    DRABBLE D J, BISHOP C M, KRAL M V. A microstructural study of grain boundary engineered alloy 800H[J]. Metallurgical and Materials Transactions A, 2010, 42(3): 763-772.
    [11]
    SHEN Z, ZHANG L F, TANG R, et al. SCC susceptibility of type 316Ti stainless steel in supercritical water[J]. Journal of Nuclear Materials, 2015, 458: 206-215. doi: 10.1016/j.jnucmat.2014.12.014
    [12]
    CHEN K, WANG J M, DU D H, et al. Stress corrosion crack growth behavior of Type 310S stainless steel in supercritical water[J]. Corrosion, 2018, 74(7): 776-787. doi: 10.5006/2775
    [13]
    GUZONAS D, EDWARDS M, ZHENG W. Assessment of candidate fuel cladding alloys for the Canadian supercritical water-cooled reactor concept[J]. Journal of Nuclear Engineering and Radiation Science, 2016, 2(1): 011016. doi: 10.1115/1.4031502
    [14]
    ZENG Y M, GUZONAS D. Corrosion assessment of candidate materials for fuel cladding in Canadian SCWR[J]. JOM, 2016, 68(2): 475-479. doi: 10.1007/s11837-015-1745-5
    [15]
    朱忠亮. 超临界水环境下电厂金属材料的氧化动力学研究[D]. 北京: 华北电力大学, 2013.
    [16]
    WANG Y Z, SUN Y, YUE M Z, et al. Reaction kinetics of chlorine corrosion to heating surfaces during coal and biomass cofiring[J]. Journal of Chemistry, 2020, 2020: 2175795.
    [17]
    NEUMANN G, TUIJN C. Self-diffusion and impurity diffusion in pure metals[M]. Oxford: Pergamon, 2008: 1-35.
    [18]
    ARIOKA K, IIJIMA Y, MIYAMOTO T. Rapid nickel diffusion in cold-worked type 316 austenitic steel at 360-500℃[J]. International Journal of Materials Research, 2017, 108(10): 791-797. doi: 10.3139/146.111542
    [19]
    HASEGAWA M. Ellingham diagram[M]// SEETHARAMAN S. Treatise on Process Metallurgy. Boston: Elsevier, 2014: 507-516.
    [20]
    KAMAYA M. Measurement of local plastic strain distribution of stainless steel by electron backscatter diffraction[J]. Materials Characterization, 2009, 60(2): 125-132. doi: 10.1016/j.matchar.2008.07.010
    [21]
    AINSWORTH R A. Creep cracking[M]//MILNE I, RITCHIE R O, KARIHALOO B. Comprehensive Structural Integrity. Oxford: Pergamon, 2007: 75-87.
    [22]
    KASSNER M E, HAYES T A. Creep cavitation in metals[J]. International Journal of Plasticity, 2003, 19(10): 1715-1748. doi: 10.1016/S0749-6419(02)00111-0
  • Relative Articles

    [1]Zhang Lefu, Huang Tao, Su Haozhan, Gao Yang, Guo Xianglong, Shen Zhao, Chen Kai. Progress and Considerations on Candidate Cladding Materials for Supercritical Water-Cooled Reactors[J]. Nuclear Power Engineering, 2025, 46(1): 183-190. doi: 10.13832/j.jnpe.2025.01.0183
    [2]Huang Tao, Su Haozhan, Zhang Lefu, Chen kai. Effect of Microstructure on Corrosion Behavior of Alloy 800H in Supercritical Water[J]. Nuclear Power Engineering, 2023, 44(5): 251-258. doi: 10.13832/j.jnpe.2023.05.0251
    [3]Su Haozhan, Wang Peng, Zhang Lefu. Effect of Working Medium Pressure and Creep on the Stress Corrosion Cracking Behavior of Cold Deformed 310S Stainless Steel in Supercritical Water Environment[J]. Nuclear Power Engineering, 2022, 43(6): 108-116. doi: 10.13832/j.jnpe.2022.06.0108
    [4]Yao Lei, Xia Bangyang, Lu Di, Wang Lianjie, Li Xiang, Wang Shiqian, Li Qing. Research on Simplified Assembly and Core Structure Design of SCWR[J]. Nuclear Power Engineering, 2020, 41(4): 45-49.
    [5]Wang Weishu, Hou Yanliang, Xu Weihui, Zhu Xiaojing, Bi Qincheng. Investigation on Nonuniformity of Heat Transfer in Triangular Subchannels of Supercritical Water Cooled Reactor[J]. Nuclear Power Engineering, 2018, 39(3): 33-39. doi: 10.13832/j.jnpe.2018.03.0033
    [6]Du Donghai, Chen Kai, Zhang Lefu, Shi Xiuqiang, YiN Kaiju. Effect of Zinc on Stress Corrosion Crack Growth Rate of Type 316 Stainless Steel[J]. Nuclear Power Engineering, 2017, 38(2): 78-83. doi: 10.13832/j.jnpe.2017.02.0078
    [7]CHEN Chao, DAN Jianqiang, ZHANG Bo. Sub-Channel Analysis of SCWR Assembly with Double-row Fuel Rods[J]. Nuclear Power Engineering, 2014, 35(2): 27-32.
    [8]ZHOU Yu, ZHANG Hong-liang, LI Man-chang, TANG Rui, FAN Heng. Study on Materials Selection for SCWR Reactor Vessel Internals[J]. Nuclear Power Engineering, 2013, 34(1): 60-64.
    [9]DU Dai-quan, XIAO Ze-jun, YAN Xiao, CENG Xiao-kang, HUANG Yan-ping. Subchannel Analysis of SCWR CSR1000 Assembly[J]. Nuclear Power Engineering, 2013, 34(1): 40-44.
    [10]SUI Hai-ming, DAN Jian-qiang, HUANG Xue-kong, GOU Jun-li, YANG Hong. Design Scheme of Special Safety System for Supercritical-Water-Cooled Reactor[J]. Nuclear Power Engineering, 2013, 34(1): 71-74.
    [11]XIA Bang-yang, ZHAO Chuan-qi, CAO Liang-zhi, LI Qing, LI Xiang, LI Man-chang. Preliminary Conceptual Design Study on Supercritical Water-Cooled Reactor CSR1000A with Annular Fuel[J]. Nuclear Power Engineering, 2013, 34(1): 15-18.
    [12]XIA Bang-yang, YANG Ping, WANG Lian-jie, MA Yong-qiang, LI Qing, LI Xiang, LIU Jing-bo. Core Preliminary Conceptual Design of Supercritical Water-Cooled Reactor CSR1000[J]. Nuclear Power Engineering, 2013, 34(1): 9-14.
    [13]LUO Feng, ZHOU Tao, CHENG Wan-xu, SU Zi-wei, CHEN Juan. Sensitivity Analysis for Transient of Partial Loss of Reactor Coolant Flow of Super LWR[J]. Nuclear Power Engineering, 2013, 34(4): 100-105.
    [14]XIA Bangyang, YANG Ping, WANG Lianjie, LI Qing, LI Xiang. Study on Reactivity Control Method for Supercritical Water-Cooled Reactor CSR1000[J]. Nuclear Power Engineering, 2013, 34(1): 26-30.
    [15]XIAO Ze-jun, LI Xiang, HUANG Yan-ping, TANG Rui, LUO Qi, ZANG Feng-gang, LI Qing, LI Peng-zhou, YI Wei. Overview of Research and Development (Phase Ⅰ) on Key Technologies for Supercritical Water-Cooled Reactor[J]. Nuclear Power Engineering, 2013, 34(1): 1-4,14.
    [16]ZENG Xiao-kang, LI Yong-liang, YAN Xiao, XIAO Ze-jun, HUANG Yan-ping. Application of CFD Methods in Research of SCWR Thermo-Hydraulics[J]. Nuclear Power Engineering, 2013, 34(1): 114-120.
    [17]PAN Qianfu, LIU Chaohong, TANG Rui, JIANG Mingzhong, YI Wei. Research on 310S for Microalloying with Addition of Titanium and Zirconium[J]. Nuclear Power Engineering, 2012, 33(S2): 70-74.
    [18]LIU Jinhua, WEN Yan, ZHANG Xuemei, HUO Songmin, GONG Bin, HE Yanchun. Corrosion Properties of Sealing Surface Material for RPV under Abnormal Working Conditions[J]. Nuclear Power Engineering, 2012, 33(1): 83-87.
    [19]GONG Bin, HUANG Yanping, JIANG E, LIU Jinhua, XIA Xiaojiao, QIU Tian, HUO Songmin. Research Progress of SCWR Water Chemistry and Related Technologies[J]. Nuclear Power Engineering, 2012, 33(6): 132-138.
    [20]LI Zhenyang, ZHOU Tao, SUN Canhui. Code Research on Mass Flux Assignment of Spuercritical Water-Cooled Reactor[J]. Nuclear Power Engineering, 2011, 32(3): 52-57.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.9 %FULLTEXT: 23.9 %META: 53.1 %META: 53.1 %PDF: 23.0 %PDF: 23.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.6 %其他: 10.6 %其他: 1.8 %其他: 1.8 %San Jose: 0.9 %San Jose: 0.9 %上海: 0.9 %上海: 0.9 %伊利诺伊州: 0.3 %伊利诺伊州: 0.3 %保定: 0.6 %保定: 0.6 %北京: 1.8 %北京: 1.8 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.3 %哥伦布: 0.3 %嘉兴: 0.3 %嘉兴: 0.3 %天津: 0.3 %天津: 0.3 %孟买: 1.2 %孟买: 1.2 %山景城: 0.3 %山景城: 0.3 %巴塞罗那省: 0.9 %巴塞罗那省: 0.9 %布拉迪斯拉发: 0.3 %布拉迪斯拉发: 0.3 %常德: 0.3 %常德: 0.3 %张家口: 5.6 %张家口: 5.6 %成都: 2.4 %成都: 2.4 %扬州: 0.3 %扬州: 0.3 %昆明: 0.3 %昆明: 0.3 %武汉: 0.3 %武汉: 0.3 %淮北: 0.3 %淮北: 0.3 %湖州: 0.3 %湖州: 0.3 %漯河: 0.6 %漯河: 0.6 %石家庄: 0.9 %石家庄: 0.9 %芒廷维尤: 39.8 %芒廷维尤: 39.8 %芝加哥: 1.2 %芝加哥: 1.2 %莫斯科: 2.7 %莫斯科: 2.7 %西宁: 2.7 %西宁: 2.7 %西安: 0.3 %西安: 0.3 %诺沃克: 17.7 %诺沃克: 17.7 %运城: 2.9 %运城: 2.9 %郑州: 0.3 %郑州: 0.3 %长沙: 0.3 %长沙: 0.3 %防城港: 0.3 %防城港: 0.3 %其他其他San Jose上海伊利诺伊州保定北京哈尔滨哥伦布嘉兴天津孟买山景城巴塞罗那省布拉迪斯拉发常德张家口成都扬州昆明武汉淮北湖州漯河石家庄芒廷维尤芝加哥莫斯科西宁西安诺沃克运城郑州长沙防城港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (179) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return