Citation: | Su Haozhan, Huang Tao, Zhang Lefu, Chen Kai. Effect of Water Chemistry on the Performance of Alloy 800H in Supercritical Water-cooled Reactor[J]. Nuclear Power Engineering, 2023, 44(5): 267-274. doi: 10.13832/j.jnpe.2023.05.0267 |
[1] |
臧金光,黄彦平. 超临界水冷堆研发进展[J]. 核动力工程,2021, 42(6): 1-4.
|
[2] |
ALLEN T R, CHEN Y, REN X, et al. Material performance in supercritical water[M]//KONINGS R J M. Comprehensive Nuclear Materials. Oxford: Elsevier, 2012: 279-326.
|
[3] |
ZHENG W Y, GUZONAS D, BOYLE K P, et al. Materials assessment for the Canadian SCWR core concept[J]. JOM, 2016, 68(2): 456-462. doi: 10.1007/s11837-015-1758-0
|
[4] |
GUZONAS D, NOVOTNY R, PENTILLA S, et al. Materials and water chemistry for supercritical water-cooled reactors[M]. Cambridge: Woodhead Publishing, 2018: 1-17.
|
[5] |
KOLLURI M, PIERICK P T, BAKKER T. Characterization of high temperature tensile and creep–fatigue properties of Alloy 800H for intermediate heat exchanger components of (V)HTRs[J]. Nuclear Engineering and Design, 2015, 284: 38-49. doi: 10.1016/j.nucengdes.2014.12.017
|
[6] |
CARVAJAL-ORTIZ R A, PLUGATYR A, SVISHCHEV I M. On the pH control at supercritical water-cooled reactor operating conditions[J]. Nuclear Engineering and Design, 2012, 248: 340-342. doi: 10.1016/j.nucengdes.2012.03.038
|
[7] |
GUZONAS D, BROSSEAU F, TREMAINE P, et al. Water chemistry in a supercritical water-cooled pressure tube reactor[J]. Nuclear Technology, 2012, 179(2): 205-219. doi: 10.13182/NT12-A14093
|
[8] |
龚宾,黄彦平,姜峨,等. 超临界水冷堆水化学控制及其相关技术研究进展[J]. 核动力工程,2012, 33(6): 132-138.
|
[9] |
朱志平,陆海伟,汤雪颖,等. 不同水工况下超临界机组水冷壁管材料的腐蚀特性研究[J]. 中国腐蚀与防护学报,2014, 34(3): 243-248. doi: 10.11902/1005.4537.2013.137
|
[10] |
DRABBLE D J, BISHOP C M, KRAL M V. A microstructural study of grain boundary engineered alloy 800H[J]. Metallurgical and Materials Transactions A, 2010, 42(3): 763-772.
|
[11] |
SHEN Z, ZHANG L F, TANG R, et al. SCC susceptibility of type 316Ti stainless steel in supercritical water[J]. Journal of Nuclear Materials, 2015, 458: 206-215. doi: 10.1016/j.jnucmat.2014.12.014
|
[12] |
CHEN K, WANG J M, DU D H, et al. Stress corrosion crack growth behavior of Type 310S stainless steel in supercritical water[J]. Corrosion, 2018, 74(7): 776-787. doi: 10.5006/2775
|
[13] |
GUZONAS D, EDWARDS M, ZHENG W. Assessment of candidate fuel cladding alloys for the Canadian supercritical water-cooled reactor concept[J]. Journal of Nuclear Engineering and Radiation Science, 2016, 2(1): 011016. doi: 10.1115/1.4031502
|
[14] |
ZENG Y M, GUZONAS D. Corrosion assessment of candidate materials for fuel cladding in Canadian SCWR[J]. JOM, 2016, 68(2): 475-479. doi: 10.1007/s11837-015-1745-5
|
[15] |
朱忠亮. 超临界水环境下电厂金属材料的氧化动力学研究[D]. 北京: 华北电力大学, 2013.
|
[16] |
WANG Y Z, SUN Y, YUE M Z, et al. Reaction kinetics of chlorine corrosion to heating surfaces during coal and biomass cofiring[J]. Journal of Chemistry, 2020, 2020: 2175795.
|
[17] |
NEUMANN G, TUIJN C. Self-diffusion and impurity diffusion in pure metals[M]. Oxford: Pergamon, 2008: 1-35.
|
[18] |
ARIOKA K, IIJIMA Y, MIYAMOTO T. Rapid nickel diffusion in cold-worked type 316 austenitic steel at 360-500℃[J]. International Journal of Materials Research, 2017, 108(10): 791-797. doi: 10.3139/146.111542
|
[19] |
HASEGAWA M. Ellingham diagram[M]// SEETHARAMAN S. Treatise on Process Metallurgy. Boston: Elsevier, 2014: 507-516.
|
[20] |
KAMAYA M. Measurement of local plastic strain distribution of stainless steel by electron backscatter diffraction[J]. Materials Characterization, 2009, 60(2): 125-132. doi: 10.1016/j.matchar.2008.07.010
|
[21] |
AINSWORTH R A. Creep cracking[M]//MILNE I, RITCHIE R O, KARIHALOO B. Comprehensive Structural Integrity. Oxford: Pergamon, 2007: 75-87.
|
[22] |
KASSNER M E, HAYES T A. Creep cavitation in metals[J]. International Journal of Plasticity, 2003, 19(10): 1715-1748. doi: 10.1016/S0749-6419(02)00111-0
|