Citation: | Wang Qi, Chen Guoshuai, Zhou Zhangjian, Xiong Ru, Zheng Jiyun, Tang Rui, Zhang Lefu. Effect of N and Al Addition on Microstructure and Mechanical Properties of Modified 25Ni-20Cr Austenitic Stainless Steel Aged at 700℃[J]. Nuclear Power Engineering, 2023, 44(5): 275-283. doi: 10.13832/j.jnpe.2023.05.0275 |
[1] |
ISEDA A, OKADA H, SEMBA H, et al. Long term creep properties and microstructure of SUPER304H, TP347HFG and HR3C for A-USC boilers[J]. Energy Materials, 2007, 2(4): 199-206. doi: 10.1179/174892408X382860
|
[2] |
ZHANG N Q, LI B R, BAI Y, et al. Oxidation of austenitic steel TP347HFG exposed to supercritical water with different dissolved oxygen concentration[J]. Applied Mechanics and Materials, 2011, 148-149: 1179-1183. doi: 10.4028/www.scientific.net/AMM.148-149.1179
|
[3] |
ODETTE G R, ALINGER M J, WIRTH B D. Recent developments in irradiation-resistant steels[J]. Annual Review of Materials Research, 2008, 38: 471-503. doi: 10.1146/annurev.matsci.38.060407.130315
|
[4] |
LINDAU R, MÖSLANG A, SCHIRRA M, et al. Mechanical and microstructural properties of a hipped RAFM ODS-steel[J]. Journal of Nuclear Materials, 2002, 307-311: 769-772. doi: 10.1016/S0022-3115(02)01045-0
|
[5] |
SAGARADZE V V, SHALAEV V I, ARBUZOV V L, et al. Radiation resistance and thermal creep of ODS ferritic steels[J]. Journal of Nuclear Materials, 2001, 295(2-3): 265-272. doi: 10.1016/S0022-3115(01)00511-6
|
[6] |
RAMAR A, SPÄTIG P, SCHÄUBLIN R. Analysis of high temperature deformation mechanism in ODS EUROFER97 alloy[J]. Journal of Nuclear Materials, 2008, 382(2-3): 210-216. doi: 10.1016/j.jnucmat.2008.08.009
|
[7] |
MUKHOPADHYAY D K, FROES F H, GELLES D S. Development of oxide dispersion strengthened ferritic steels for fusion[J]. Journal of Nuclear Materials, 1998, 258-263: 1209-1215. doi: 10.1016/S0022-3115(98)00188-3
|
[8] |
YUTANI K, KISHIMOTO H, KASADA R, et al. Evaluation of Helium effects on swelling behavior of oxide dispersion strengthened ferritic steels under ion irradiation[J]. Journal of Nuclear Materials, 2007, 367-370: 423-427. doi: 10.1016/j.jnucmat.2007.03.016
|
[9] |
CHO H S, KIMURA A, UKAI S, et al. Corrosion properties of oxide dispersion strengthened steels in super-critical water environment[J]. Journal of Nuclear Materials, 2004, 329-333: 387-391. doi: 10.1016/j.jnucmat.2004.04.040
|
[10] |
YOSHITAKE T, OHMORI T, MIYAKAWA S. Burst properties of irradiated oxide dispersion strengthened ferritic steel claddings[J]. Journal of Nuclear Materials, 2002, 307-311: 788-792. doi: 10.1016/S0022-3115(02)00947-9
|
[11] |
ALAMO A, BERTIN J L, SHAMARDIN V K, et al. Mechanical properties of 9Cr martensitic steels and ODS-FeCr alloys after neutron irradiation at 325℃ up to 42dpa[J]. Journal of Nuclear Materials, 2007, 367-370: 54-59. doi: 10.1016/j.jnucmat.2007.03.166
|
[12] |
WAS G S, AMPORNRAT P, GUPTA G, et al. Corrosion and stress corrosion cracking in supercritical water[J]. Journal of Nuclear Materials, 2007, 371(1-3): 176-201. doi: 10.1016/j.jnucmat.2007.05.017
|
[13] |
ZHANG Q, TANG R, YIN K J, et al. Corrosion behavior of Hastelloy C-276 in supercritical water[J]. Corrosion Science, 2009, 51(9): 2092-2097. doi: 10.1016/j.corsci.2009.05.041
|
[14] |
FULGER M, OHAI D, MIHALACHE M, et al. Oxidation behavior of Incoloy 800 under simulated supercritical water conditions[J]. Journal of Nuclear Materials, 2009, 385(2): 288-293. doi: 10.1016/j.jnucmat.2008.12.004
|
[15] |
胡本芙,余泉茂,高桥平七郎,等. 氦对Fe-Cr-Ni合金和Fe-Cr-Mn合金辐照损伤的影响[J]. 核科学与工程,2003, 23(2): 145-151. doi: 10.3321/j.issn:0258-0918.2003.02.010
|
[16] |
刘含莲,滕新营,王执福,等. Fe-Cr-Ni-N高温耐热钢的抗氧化性研究[J]. 铸造技术,2001, 22(6): 55-57. doi: 10.3969/j.issn.1000-8365.2001.06.023
|
[17] |
王荣光,魏云,张清廉,等. 奥氏体不锈钢SUS316及SUS316L在含Cl−的饱和H2S水溶液中的应力腐蚀行为研究[J]. 中国腐蚀与防护学报,2000, 20(1): 47-53. doi: 10.3969/j.issn.1005-4537.2000.01.008
|
[18] |
周军,李中奎. 轻水反应堆(LWR)用包壳材料研究进展[J]. 中国材料进展,2014, 33(9-10): 554-559.
|
[19] |
张小可,纪仁峰,周灿栋. 超级奥氏体不锈钢00Cr20Ni25Mo6N0.15的时效析出相研究[J]. 宝钢技术,2021(6): 35-43,47. doi: 10.3969/j.issn.1008-0716.2021.06.006
|
[20] |
BRADY M P, MAGEE J, YAMAMOTO Y, et al. Co-optimization of wrought alumina-forming austenitic stainless steel composition ranges for high-temperature creep and oxidation/corrosion resistance[J]. Materials Science and Engineering:A, 2014, 590: 101-115. doi: 10.1016/j.msea.2013.10.014
|
[21] |
徐向棋,吕昭平. 新一代新型抗高温氧化奥氏体耐热钢的研究进展[J]. 中国材料进展,2011, 30(12): 1-5+33.
|
[22] |
VISWANATHAN R, BAKKER W. Materials for ultrasupercritical coal power plants-Turbine materials: part II[J]. Journal of Materials Engineering and Performance, 2001, 10(1): 96-101. doi: 10.1361/105994901770345402
|
[23] |
VISWANATHAN R, COLEMAN K, RAO U. Materials for ultra-supercritical coal-fired power plant boilers[J]. International Journal of Pressure Vessels and Piping, 2006, 83(11-12): 778-783. doi: 10.1016/j.ijpvp.2006.08.006
|
[24] |
BRADY M P, YAMAMOTO Y, SANTELLA M L, et al. Composition, microstructure, and water vapor effects on internal/external oxidation of alumina-forming austenitic stainless steels[J]. Oxidation of Metals, 2009, 72(5): 311-333.
|
[25] |
BRADY M P, UNOCIC K A, LANCE M J, et al. Increasing the Upper temperature oxidation limit of alumina forming austenitic stainless steels in air with water vapor[J]. Oxidation of Metals, 2011, 75(5): 337-357.
|
[26] |
BRADY M P, YAMAMOTO Y, SANTELLA M L, et al. Effects of minor alloy additions and oxidation temperature on protective alumina scale Formation in creep-resistant austenitic stainless steels[J]. Scripta Materialia, 2007, 57(12): 1117-1120. doi: 10.1016/j.scriptamat.2007.08.032
|
[27] |
STOTT F H, WOOD G C, STRINGER J. The influence of alloying elements on the development and maintenance of protective scales[J]. Oxidation of Metals, 1995, 44(1-2): 113-145. doi: 10.1007/BF01046725
|
[28] |
王曼. 新型奥氏体钢显微组织结构稳定性及力学性能的研究[D]. 北京: 北京科技大学, 2017.
|
[29] |
孙胜英. 新型奥氏体耐热钢的制备与性能优化[D]. 北京: 北京科技大学, 2014
|