Advance Search
Volume 44 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Zhou Qiyin, Liu Zhu, Zhang Lefu, Long Jiachen, Guo Xianglong. Reaxff-MD Simulation of the Effect of Incoherent Grain Boundaries and Its Segregation on Oxidation of 3C-SiC in Supercritical Carbon Dioxide[J]. Nuclear Power Engineering, 2023, 44(5): 284-289. doi: 10.13832/j.jnpe.2023.05.0284
Citation: Zhou Qiyin, Liu Zhu, Zhang Lefu, Long Jiachen, Guo Xianglong. Reaxff-MD Simulation of the Effect of Incoherent Grain Boundaries and Its Segregation on Oxidation of 3C-SiC in Supercritical Carbon Dioxide[J]. Nuclear Power Engineering, 2023, 44(5): 284-289. doi: 10.13832/j.jnpe.2023.05.0284

Reaxff-MD Simulation of the Effect of Incoherent Grain Boundaries and Its Segregation on Oxidation of 3C-SiC in Supercritical Carbon Dioxide

doi: 10.13832/j.jnpe.2023.05.0284
  • Received Date: 2022-11-18
  • Rev Recd Date: 2023-01-04
  • Publish Date: 2023-10-13
  • To understand the corrosion failure mechanism of silicon carbide (SiC) material in supercritical carbon dioxide (sCO2) reactors, this study investigated the oxidation behavior of 3C-SiC in supercritical CO2 environment through molecular dynamics simulation, and explored in depth the effect of element segregation at incoherent grain boundaries (GBs) on oxidation. The results show that the oxidation rate near the incoherent GBs is faster than that of single crystals, and the segregation of either silicon or carbon elements intensifies the oxidation at the incoherent GBs. The accelerated oxidation near incoherent GBs is attributed to the incompletely coordinated silicon atoms at GBs, and these silicon atoms are more likely to bond with oxygen atoms. Elemental segregation at incoherent GBs further enhances the oxidation rate of silicon carbide at incoherent GBs, where the segregation of silicon elements makes it more difficult to fully coordinate silicon atoms, which results in more silicon atoms at GBs with a lower positive charge, while the partial segregation of carbon leads to a larger free volume at the GBs, so the oxygen atoms can bond with the deeper silicon atoms. This study revealed the corrosion mechanism of 3C-SiC in sCO2 and the reasons for the accelerated corrosion at incoherent GBs, providing theoretical support for the degradation mechanism of SiC materials in sCO2 reactors.

     

  • loading
  • [1]
    董力. 超临界二氧化碳发电技术概述[J]. 中国环保产业,2017(5): 48-52. doi: 10.3969/j.issn.1006-5377.2017.05.013
    [2]
    赵煜,董自春,张羽,等. 超临界二氧化碳发电系统研究进展[J]. 热能动力工程,2019, 34(1): 11-16. doi: 10.16146/j.cnki.rndlgc.2019.01.002
    [3]
    吴攀,高春天,单建强. 超临界二氧化碳布雷顿循环在核能领域的应用[J]. 现代应用物理,2019, 10(3): 031202.
    [4]
    LEWIS T G, PARMA E J, WRIGHT S A, et al. Sandia’s supercritical CO2 direct cycle gas fast reactor (SC-GFR) concept[C]//2011 Small Modular Reactors Symposium. Washington: ASME, 2011: 91-94.
    [5]
    KATO Y, NITAWAKI T, MUTO Y. Medium temperature carbon dioxide gas turbine reactor[J]. Nuclear Engineering and Design, 2004, 230(1-3): 195-207. doi: 10.1016/j.nucengdes.2003.12.002
    [6]
    SUBRAMANIAN G O, KIM S H, JANG C. The carburization behavior of alloy 800HT in high temperature supercritical-CO2[J]. Materials Letters, 2021, 299: 130067. doi: 10.1016/j.matlet.2021.130067
    [7]
    CAO G, FIROUZDOR V, SRIDHARAN K, et al. Corrosion of austenitic alloys in high temperature supercritical carbon dioxide[J]. Corrosion Science, 2012, 60: 246-255. doi: 10.1016/j.corsci.2012.03.029
    [8]
    PETROSKI R, BATES E, DIONNE B, et al. Design of a direct-cycle supercritical CO2 nuclear reactor with heavy water moderation[J]. Nuclear Engineering and Technology, 2022, 54(3): 877-887. doi: 10.1016/j.net.2021.09.030
    [9]
    ZHU S J, MIZUNO M, KAGAWA Y, et al. Creep and fatigue behavior in Hi-nicalon-fiber-reinforced silicon carbide composites at high temperatures[J]. Journal of the American Ceramic Society, 1999, 82(1): 117-128.
    [10]
    ZHU S, MIZUNO M, KAGAWA Y, et al. Monotonic tension, fatigue and creep behavior of SiC-fiber-reinforced SiC-matrix composites: a review[J]. Composites Science and Technology, 1999, 59(6): 833-851. doi: 10.1016/S0266-3538(99)00014-7
    [11]
    DEÁK P, KNAUP J M, HORNOS T, et al. The mechanism of defect creation and passivation at the SiC/SiO2 interface[J]. Journal of Physics D:Applied Physics, 2007, 40(20): 6242-6253. doi: 10.1088/0022-3727/40/20/S09
    [12]
    ITO A, AKIYAMA T, NAKAMURA K, et al. First-principles calculations for initial oxidation processes of SiC surfaces: effect of crystalline surface orientations[J]. Japanese Journal of Applied Physics, 2015, 54(10): 101301. doi: 10.7567/JJAP.54.101301
    [13]
    LIU C, XI J Q, SZLUFARSKA I. Sensitivity of SiC grain boundaries to oxidation[J]. The Journal of Physical Chemistry C, 2019, 123(18): 11546-11554. doi: 10.1021/acs.jpcc.9b00068
    [14]
    DOYLE P J, ZINKLE S, RAIMAN S S. Hydrothermal corrosion behavior of CVD SiC in high temperature water[J]. Journal of Nuclear Materials, 2020, 539: 152241. doi: 10.1016/j.jnucmat.2020.152241
    [15]
    PARK J Y, KIM I H, JUNG Y I, et al. Long-term corrosion behavior of CVD SiC in 360℃ water and 400℃ steam[J]. Journal of Nuclear Materials, 2013, 443(1-3): 603-607. doi: 10.1016/j.jnucmat.2013.07.058
    [16]
    CANCINO-TREJO F, NAVARRO-SOLIS D J, LÓPEZ-HONORATO E, et al. Grain boundary complexions in silicon carbide[J]. Journal of the American Ceramic Society, 2018, 101(3): 1009-1013. doi: 10.1111/jace.15300
    [17]
    PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. doi: 10.1006/jcph.1995.1039
    [18]
    FOGARTY J C, AKTULGA H M, GRAMA A Y, et al. A reactive molecular dynamics simulation of the silica-water interface[J]. The Journal of Chemical Physics, 2010, 132(17): 174704. doi: 10.1063/1.3407433
    [19]
    STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012. doi: 10.1088/0965-0393/18/1/015012
    [20]
    CHEN X H, SUN Z G, CHEN Z Z, et al. ReaxFF molecular dynamics simulation of oxidation behavior of 3C-SiC in O2 and CO2[J]. Computational Materials Science, 2021, 191: 110341. doi: 10.1016/j.commatsci.2021.110341
    [21]
    ŠIMONKA V, HÖSSINGER A, WEINBUB J, et al. ReaxFF reactive molecular dynamics study of orientation dependence of initial silicon carbide oxidation[J]. The Journal of Physical Chemistry A, 2017, 121(46): 8791-8798. doi: 10.1021/acs.jpca.7b08983
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (177) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return