Citation: | Liu Zhu, Zhou Qiyin, Zhang Lefu, Long Jiachen, Gao Yang, Guo Xianglong. Study on General Corrosion Behavior of Two Alumina-forming Austenitic Stainless Steels in Supercritical Carbon Dioxide[J]. Nuclear Power Engineering, 2023, 44(5): 290-297. doi: 10.13832/j.jnpe.2023.05.0290 |
[1] |
黄彦平,王俊峰. 超临界二氧化碳在核反应堆系统中的应用[J]. 核动力工程,2012, 33(3): 21-27.
|
[2] |
梁志远,桂雍,赵钦新. 超临界CO2动力循环高温材料腐蚀研究进展[J]. 动力工程学报,2021, 41(11): 910-917.
|
[3] |
肖博,朱忠亮,李瑞涛,等. 超临界二氧化碳工质发电系统候选材料高温腐蚀研究现状与进展[J]. 热力发电,2020, 49(10): 30-37. doi: 10.19666/j.rlfd.202006155
|
[4] |
刘蔚伟,杨鸿,姜峨,等. 超临界二氧化碳核能动力转换系统关键材料腐蚀行为研究[J]. 原子能科学技术,2021, 55(S2): 242-248.
|
[5] |
GUO T S, XU Y M, LIU S J, et al. Characteristics of the corrosion products on three scratched heat-resisting alloys in closed-loop supercritical and high-temperature CO2[J]. Corrosion Science, 2022, 198: 110148. doi: 10.1016/j.corsci.2022.110148
|
[6] |
CAO G, FIROUZDOR V, SRIDHARAN K, et al. Corrosion of austenitic alloys in high temperature supercritical carbon dioxide[J]. Corrosion Science, 2012, 60: 246-255. doi: 10.1016/j.corsci.2012.03.029
|
[7] |
LEE H J, KIM H, KIM S H, et al. Corrosion and carburization behavior of chromia-forming heat resistant alloys in a high-temperature supercritical-carbon dioxide environment[J]. Corrosion Science, 2015, 99: 227-239. doi: 10.1016/j.corsci.2015.07.007
|
[8] |
XU X Q, ZHANG X F, CHEN G L, et al. Improvement of high-temperature oxidation resistance and strength in alumina-forming austenitic stainless steels[J]. Materials Letters, 2011, 65(21-22): 3285-328. doi: 10.1016/j.matlet.2011.07.021
|
[9] |
YAMAMOTO Y, BRADY M P, LU Z P, et al. Creep-resistant, Al2O3-forming austenitic stainless steels[J]. Science, 2007, 316(5823): 433-436. doi: 10.1126/science.1137711
|
[10] |
ZHANG J Q, SPECK P, YOUNG D J. Metal dusting of alumina-forming creep-resistant austenitic stainless steels[J]. Oxidation of Metals, 2012, 77(3-4): 167-187. doi: 10.1007/s11085-011-9279-x
|
[11] |
WEN D H, LI Z, JIANG B B, et al. Effects of Nb/Ti/V/Ta on phase precipitation and oxidation resistance at 1073 K in alumina-forming austenitic stainless steels[J]. Materials Characterization, 2018, 144: 86-98. doi: 10.1016/j.matchar.2018.07.007
|
[12] |
YAMAMOTO Y, BRADY M P, SANTELLA M L, et al. Overview of strategies for high-temperature creep and oxidation resistance of alumina-forming austenitic stainless steels[J]. Metallurgical and Materials Transactions A, 2011, 42(4): 922-931. doi: 10.1007/s11661-010-0295-2
|
[13] |
刘珠,郭相龙,王鹏,等. 310S不锈钢在超临界二氧化碳中的腐蚀行为研究[J]. 核动力工程,2020, 41(S1): 183-187. doi: 10.13832/j.jnpe.2020.S1.0183
|
[14] |
倪一帆,杨昌顺,赵双群. T91和HR3C钢在600℃/25 MPa超临界二氧化碳中的腐蚀行为[J]. 腐蚀与防护,2022, 43(1): 18-23.
|
[15] |
HE L F, ROMAN P, LENG B, et al. Corrosion behavior of an alumina forming austenitic steel exposed to supercritical carbon dioxide[J]. Corrosion Science, 2014, 82: 67-76. doi: 10.1016/j.corsci.2013.12.023
|
[16] |
BERGNER D, KHADDOUR Y. Impurity and chemical diffusion of Al in BCC and Fcc iron[J]. Defect and Diffusion Forum, 1993, 95-98: 709-714. doi: 10.4028/www.scientific.net/DDF.95-98.709
|
[17] |
WILLIAMS P I, FAULKNER R G. Chemical volume diffusion coefficients for stainless steel corrosion studies[J]. Journal of Materials Science, 1987, 22(10): 3537-3542. doi: 10.1007/BF01161455
|
[18] |
KIM C, KIM H, HEO W, et al. High-temperature steam oxidation behavior of alumina-forming duplex FeNiCrAl and ferritic FeCrAl alloys at 800℃ to 1050℃[J]. Corrosion Science, 2021, 190: 109658. doi: 10.1016/j.corsci.2021.109658
|
[19] |
MAHAFFEY J T. Effect of partial pressure of oxygen and activity of carbon on the corrosion of high temperature alloys in s-CO2 environments[D]. Madison: The University of Wisconsin-Madison, 2017.
|
[20] |
CHEN H S, KIM S H, KIM C, et al. Corrosion behaviors of four stainless steels with similar chromium content in supercritical carbon dioxide environment at 650℃[J]. Corrosion Science, 2019, 156: 16-31. doi: 10.1016/j.corsci.2019.04.043
|
[21] |
OLEKSAK R P, HOLCOMB G R, CARNEY C S, et al. Effect of surface finish on high-temperature oxidation of steels in CO2, supercritical CO2, and air[J]. Oxidation of Metals, 2019, 92(5-6): 525-540. doi: 10.1007/s11085-019-09938-6
|
[22] |
HOLCOMB G, HAWK J, ROZMAN K, et al. Materials performance in supercritical CO2 in comparison with atmospheric pressure CO2 and supercritical steam: NETL-PUB-1178[R]. Pittsburgh: National Energy Technology Lab, 2016.
|
[23] |
LEE H J, SUBRAMANIAN G O, KIM S H, et al. Effect of pressure on the corrosion and carburization behavior of chromia-forming heat-resistant alloys in high-temperature carbon dioxide environments[J]. Corrosion Science, 2016, 111: 649-658. doi: 10.1016/j.corsci.2016.06.004
|
[24] |
LIM J Y, MCKRELL T J, EASTWICK G, et al. Corrosion of materials in supercritical carbon dioxide environments[C]//Proceedings of CORROSION 2008. New Orleans: OnePetro, 2008.
|