Advance Search
Volume 44 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
Wang Lipeng, Cao Lu, Chen Sen, Zhang Xinyi, Jiang Duoyu, Hu Tianliang, Li Da, Chen Lixin, Jiang Xinbiao. Study of KRUSTY Thermal Expansion Negative Feedback Calculation Based on Unstructured-Mesh MCNP[J]. Nuclear Power Engineering, 2023, 44(6): 45-53. doi: 10.13832/j.jnpe.2023.06.0045
Citation: Wang Lipeng, Cao Lu, Chen Sen, Zhang Xinyi, Jiang Duoyu, Hu Tianliang, Li Da, Chen Lixin, Jiang Xinbiao. Study of KRUSTY Thermal Expansion Negative Feedback Calculation Based on Unstructured-Mesh MCNP[J]. Nuclear Power Engineering, 2023, 44(6): 45-53. doi: 10.13832/j.jnpe.2023.06.0045

Study of KRUSTY Thermal Expansion Negative Feedback Calculation Based on Unstructured-Mesh MCNP

doi: 10.13832/j.jnpe.2023.06.0045
  • Received Date: 2022-11-14
  • Rev Recd Date: 2022-12-27
  • Available Online: 2023-12-11
  • Publish Date: 2023-12-15
  • Thermal expansion negative feedback simulation of heat pipe reactor KRUSTY has always been a difficulty in calculation. Based on the unstructured mesh ablility of MCNP, the power distribution of KRUSTY unstructured mesh is directly input to ABAQUS, and the thermal mechanical coupling of KRUSTY is carried out by ABAQUS. The thermal deformation simulation, expansion reactivity feedback and density feedback of KRUSTY are studied under the unified unstructured mesh. The difference between non-uniform density and uniform density is studied. The results show that the thermal expansion effect brings more than 900pcm (pcm=10-5) negative feedback, and the special fuel deformation mainly occurs on the upper and outer edge surface, with a total displacement of about 0.9 cm. The total temperature difference of reactor core is small enough, only about 23 K. Moreover, the neutronics-thermo-mechanics coupling tends to make the core temperature distribution more uniform, and the reactor design can satisfy the single-point failure principle due to the redundant design of the heat pipe. Compared with the traditional CSG geometry, the unstructured-mesh Monte Carlo method can better simulate the thermal expansion effect of metal fuel reactor.

     

  • loading
  • [1]
    POSTON D I, GIBSON M A, GODFROY T, et al. KRUSTY reactor design[J]. Nuclear Technology, 2020, 206(S1): S13-S30.
    [2]
    MATTHEWS C, LABOURE V, DEHART M, et al. Coupled multiphysics simulations of heat pipe microreactors using DireWolf[J]. Nuclear Technology, 2021, 207(7): 1142-1162. doi: 10.1080/00295450.2021.1906474
    [3]
    LEE C, JUNG Y S. Development of the PROTEUS and ANSYS coupled system for simulating heat pipe cooled micro reactors[Z]. Argonne: Argonne National Laboratory, 2020.
    [4]
    STERBENTZ J W, WERNER J E, MCKELLAR M G, et al. Special purpose nuclear reactor (5 MW) for reliable power at remote sites assessment report[Z]. Idaho Falls: Idaho National Laboratory, 2017.
    [5]
    MA Y G, HAN W B, XIE B H, et al. Coupled neutronic, thermal-mechanical and heat pipe analysis of a heat pipe cooled reactor[J]. Nuclear Engineering and Design, 2021, 384: 111473. doi: 10.1016/j.nucengdes.2021.111473
    [6]
    马誉高,杨小燕,刘余,等. MW级热管冷却反应堆反馈特性及启堆过程研究[J]. 原子能科学技术,2021,55(S2):213-220.
    [7]
    柴晓明,马誉高,韩文斌,等. 热管堆固态堆芯三维核热力耦合方法与分析[J]. 原子能科学技术,2021,55(S2):189-195.
    [8]
    马誉高,刘旻昀,余红星,等. 热管冷却反应堆核热力耦合研究[J]. 核动力工程,2020,41(4):191-196.
    [9]
    MA Y G, LIU M Y, XIE B H, et al. Neutronic and thermal-mechanical coupling schemes for heat pipe-cooled reactor designs[J]. Journal of Nuclear Engineering and Radiation Science, 2022, 8(2): 021303. doi: 10.1115/1.4051612
    [10]
    郭玉川,李泽光,王侃,等. 兆瓦级热管反应堆系统初步设计及堆芯“核-热-力”耦合方法研究[J]. 中国基础科学,2021,23(3):51-58.
    [11]
    GUO Y C, LI Z G, HUANG S F, et al. A new neutronics-thermal-mechanics multi-physics coupling method for heat pipe cooled reactor based on RMC and OpenFOAM[J]. Progress in Nuclear Energy, 2021, 139: 103842. doi: 10.1016/j.pnucene.2021.103842
    [12]
    GUO Y C, LI Z G, WANG K, et al. A transient multiphysics coupling method based on OpenFOAM for heat pipe cooled reactors[J]. Science China Technological Sciences, 2022, 65(1): 102-114.
    [13]
    李相越,肖维,张滕飞,等. 热管反应堆多物理耦合平台初步研究[J]. 核动力工程,2021,42(2):208-212.
    [14]
    XIAO W, LI X Y, LI P J, et al. High-fidelity multi-physics coupling study on advanced heat pipe reactor[J]. Computer Physics Communications, 2022, 270: 108152. doi: 10.1016/j.cpc.2021.108152
    [15]
    王立鹏,陈森,张信一,等. 基于非结构网格粒子输运的蒙特卡罗模拟计算研究[J]. 核科学与工程,2022,52(10):10.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (378) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return