Advance Search
Volume 44 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
Xu Zhen, Hu Peizheng, Tong Lili, Cao Xuewu. Study on Particle Size Prediction of Sodium Atomization Based on Unstable Wave Theory[J]. Nuclear Power Engineering, 2023, 44(6): 80-85. doi: 10.13832/j.jnpe.2023.06.0080
Citation: Xu Zhen, Hu Peizheng, Tong Lili, Cao Xuewu. Study on Particle Size Prediction of Sodium Atomization Based on Unstable Wave Theory[J]. Nuclear Power Engineering, 2023, 44(6): 80-85. doi: 10.13832/j.jnpe.2023.06.0080

Study on Particle Size Prediction of Sodium Atomization Based on Unstable Wave Theory

doi: 10.13832/j.jnpe.2023.06.0080
  • Received Date: 2022-12-12
  • Rev Recd Date: 2023-05-11
  • Available Online: 2023-12-11
  • Publish Date: 2023-12-15
  • The particle size of sodium atomization is the key factor affecting the combustion intensity of sodium spray fire. Because of the unstable chemical properties of sodium, water is usually used to replace sodium to carry out atomization experiments, and it is necessary to obtain the particle size conversion relationship between them. In this paper, based on the unstable wave theory, the particle size similarity model of liquid atomization characterized by liquid physical parameters and atomization pressure difference is established. The applicability of the model is verified by different atomization experiments of various fluids from the perspectives of pressure difference and physical parameters. Furthermore, an experimental facility for water atomization using nozzle to simulate the crack is designed, the average particle size of water atomized droplets with pressure difference of 0.1~0.5 MPa is obtained, and the average particle size of sodium atomized droplets at 300~600℃ under different pressure differences is predicted. The particle size similarity model and the experimental device for sodium atomization simulation using water established in this paper can realize the prediction of sodium atomization particle size under different pressure differences, and provide reference for the research of Sodium atomization fire accidents.

     

  • loading
  • [1]
    MANZINI G, TORSELLO G, PAROZZI F. Sodium safety-spray and pool fires ECART modeling[C]. Italy: Proceedings of the 15th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics,Pisa, 2013.
    [2]
    BAE J H, AHN D H, KIM Y C, et al. An experimental study on the characteristics of sodium fires[J]. Nuclear Engineering and Technology, 1994, 26(4): 471-483.
    [3]
    ZOU W B, ZOU Z Z, TONG L L, et al. Semi-empirical model of droplet size distribution from the maximum entropy principle in sodium spray[J]. Frontiers in Energy Research, 2022, 10: 888738. doi: 10.3389/fenrg.2022.888738
    [4]
    CLARK A J, DENMAN M R, TAKATA T, et al. SNL/JAEA collaborations on Sodium fire benchmarking: SAND2017-12409[R]. Albuquerque: Sandia National Lab. , 2017.
    [5]
    ZOU Z Z, TONG L L, CAO X W. Sodium spray fire analysis with combustion space multi-node model for sodium-cooled fast reactor[C]//LIU C M. Proceedings of the 23rd Pacific Basin Nuclear Conference. Singapore: Springer, 2023.
    [6]
    DU H O, WANG R D, WANG G Z, et al. Sodium spray research in agon atmosphere[J]. Annual Report of China Institute of Atomic Energy, 2014(81): 175.
    [7]
    TORSELLO G, PAROZZI F, NERICCIO L, et al. Characterization of the liquid Sodium spray generated by a pipework hole[C]. U.S.: Proceedings of the 2012 International Congress on Advances in Nuclear Power Plants. La Grange Park: American Nuclear Society, 2012.
    [8]
    NAGAI K, HIRABAYASHI M, ONOJIMA T, et al. Sodium leakage and combustion tests-measurement and distribution of droplet size using various spray nozzles: JNC TN9400 99-030[R]. Tokyo: Japan Nuclear Cycle Development Institute, 1999.
    [9]
    AOTO K, DUFOUR P, HONGYI Y, et al. A summary of sodium-cooled fast reactor development[J]. Progress in Nuclear Energy, 2014, 77: 247-265. doi: 10.1016/j.pnucene.2014.05.008
    [10]
    OHSHIMA H, KUBO S. Sodium-cooled fast reactor[M]. United Kingdom: Woodhead Publishing, 2016: 97-118.
    [11]
    CHEN P C, WANG W C, ROBERTS W L, et al. Spray and atomization of diesel fuel and its alternatives from a single-hole injector using a common rail fuel injection system[J]. Fuel, 2013, 103: 850-861. doi: 10.1016/j.fuel.2012.08.013
    [12]
    LIN S P, LIAN Z W. Absolute and convective instability of a viscous liquid jet surrounded by a viscous gas in a vertical pipe[J]. Physics of Fluids A:Fluid Dynamics, 1993, 5(3): 771-773. doi: 10.1063/1.858662
    [13]
    REITZ R D. Atomization and other breakup regimes of a liquid jet[D]. USA: Princeton University, 1978: 123-130.
    [14]
    KITAMURA Y, MISHIMA H, TAKAHASHI T. Stability of jets in liquid-liquid systems[J]. The Canadian Journal of Chemical Engineering, 1982, 60(6): 723-731. doi: 10.1002/cjce.5450600602
    [15]
    ADELBERG M. Mean drop size resulting from the injection of a liquid jet into a high-speed gas stream[J]. AIAA Journal, 1968, 6(6): 1143-1147. doi: 10.2514/3.4686
    [16]
    DOMBROWSKI N, JOHNS W R. The aerodynamic instability and disintegration of viscous liquid sheets[J]. Chemical Engineering Science, 1963, 18(3): 203-214. doi: 10.1016/0009-2509(63)85005-8
    [17]
    WERT K L. A rationally-based correlation of mean fragment size for drop secondary breakup[J]. International Journal of Multiphase Flow, 1995, 21(6): 1063-1071. doi: 10.1016/0301-9322(95)00036-W
    [18]
    FINK J K, LEIBOWITZ L. Thermodynamic and transport properties of Sodium liquid and vapor: ANL/RE-95/2[R]. Argonne: Argonne National Lab., 1995.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (123) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return