Citation: | Shu Ming, Zhou Qin, Li Gang, Liu Xiao, Sun Yongduo, Zhao Ke, Xiao Jun. Effect of Al Element on Thermal Aging Behavior of 20Cr25NiNb Heat-Resistant Steel[J]. Nuclear Power Engineering, 2023, 44(6): 140-147. doi: 10.13832/j.jnpe.2023.06.0140 |
[1] |
黄彦平,王俊峰. 超临界二氧化碳在核反应堆系统中的应用[J]. 核动力工程,2012, 33(3): 21-27.
|
[2] |
杨文斗. 反应堆材料学[M]. 北京: 中国原子能出版社, 2000: 232.
|
[3] |
DAWSON J W, PHILLIPS M. Gas-cooled nuclear reactor designs, operation and fuel cycle[M]// CROSSLAND I. Nuclear Fuel Cycle Science and Engineering. Cambridge: Woodhead Publishing, 2012: 300-332.
|
[4] |
AL-SHATER A, ENGELBERG D, LYON S, et al. Characterization of the stress corrosion cracking behavior of thermally sensitized 20Cr-25Ni stainless steel in a simulated cooling pond environment[J]. Journal of Nuclear Science and Technology, 2017, 54(7): 742-751. doi: 10.1080/00223131.2017.1309305
|
[5] |
SHU M, ZHOU Q, SHEN Y H, et al. Improved creep resistance of 20Cr25NiNb heat resistant steels through grain boundary intermetallic precipitation strengthening[J]. Journal of Materials Research and Technology, 2023, 25: 3728-3743. doi: 10.1016/j.jmrt.2023.06.213
|
[6] |
JANG M H, MOON J, KANG J Y, et al. Effect of tungsten addition on high-temperature properties and microstructure of alumina-forming austenitic heat-resistant steels[J]. Materials Science and Engineering:A, 2015, 647: 163-169. doi: 10.1016/j.msea.2015.09.018
|
[7] |
JANG M H, KANG J Y, JANG J H, et al. Improved creep strength of alumina-forming austenitic heat-resistant steels through W addition[J]. Materials Science and Engineering:A, 2017, 696: 70-79. doi: 10.1016/j.msea.2017.04.062
|
[8] |
YAMAMOTO Y, BRADY M P, SANTELLA M L, et al. Overview of strategies for high-temperature creep and oxidation resistance of alumina-forming austenitic stainless steels[J]. Metallurgical and Materials Transactions A, 2011, 42(4): 922-931. doi: 10.1007/s11661-010-0295-2
|
[9] |
EVANS H E. Spallation of oxide from stainless steel AGR nuclear fuel cladding: mechanisms and consequences[J]. Materials Science and Technology, 1988, 4(5): 414-420. doi: 10.1179/mst.1988.4.5.414
|
[10] |
LOBB R C. Observations on the microstructure of 20Cr-25Ni-Nb stainless steel after exposure to iodine vapor during creep at 750℃[J]. Oxidation of Metals, 1981, 15(1): 147-167.
|
[11] |
LOBB R C. The effect of iodine vapour on creep rupture properties of nitrided 20% Cr/25% Ni/Nb/1.5 Ti stainless steel[J]. Journal of Nuclear Materials, 1978, 74(2): 212-220. doi: 10.1016/0022-3115(78)90360-4
|
[12] |
BENNETT M J, ROBERTS A C, SPINDLER M W, et al. Interaction between oxidation and mechanical properties of 20Cr–25Ni–Nb stabilised stainless steel[J]. Materials Science and Technology, 1990, 6(1): 56-68. doi: 10.1179/mst.1990.6.1.56
|
[13] |
JIANG Y J, GAO Q Z, ZHANG H L, et al. The effect of isothermal aging on microstructure and mechanical behavior of modified 2.5Al alumina-forming austenitic steel[J]. Materials Science and Engineering:A, 2019, 748: 161-172. doi: 10.1016/j.msea.2019.01.087
|
[14] |
JIANG J D, LIU Z Y, GAO Q Z, et al. The effect of isothermal aging on creep behavior of modified 2.5Al alumina-forming austenitic steel[J]. Materials Science and Engineering:A, 2020, 797: 140219. doi: 10.1016/j.msea.2020.140219
|
[15] |
SHU M, ZHOU Q, XIAO J, et al. Precipitates evolution during isothermal aging and its effect on tensile properties for an AFA alloy containing W and B elements[J]. Journal of Materials Science, 2023, 58(27): 11252-11269. doi: 10.1007/s10853-023-08663-5
|
[16] |
YAMAMOTO Y, SANTELLA M L, BRADY M P, et al. Effect of alloying additions on phase Equilibria and Creep resistance of alumina-forming austenitic stainless steels[J]. Metallurgical and Materials Transactions A, 2009, 40(8): 1868-1880. doi: 10.1007/s11661-009-9886-1
|
[17] |
HU B, TROTTER G, WANG Z W, et al. Effect of boron and carbon addition on microstructure and mechanical properties of the aged gamma-prime strengthened alumina-forming austenitic alloys[J]. Intermetallics, 2017, 90: 36-49. doi: 10.1016/j.intermet.2017.06.011
|
[18] |
ZHAO W X, ZHOU D Q, JIANG S H, et al. Ultrahigh stability and strong precipitation strengthening of nanosized NbC in alumina-forming austenitic stainless steels subjecting to long-term high-temperature exposure[J]. Materials Science and Engineering:A, 2018, 738: 295-307. doi: 10.1016/j.msea.2018.09.081
|
[19] |
BEI H, YAMAMOTO Y, BRADY M P, et al. Aging effects on the mechanical properties of alumina-forming austenitic stainless steels[J]. Materials Science and Engineering:A, 2010, 527(7-8): 2079-2086. doi: 10.1016/j.msea.2009.11.052
|
[20] |
ALOMARI A S. Serrated yielding and creep properties of an advanced austenitic stainless steel (Alloy 709) - application to next generation sodium fast reactors[D]. Raleigh: North Carolina State University, 2019.
|
[21] |
MENG H J, WANG J, WANG L, et al. The precipitation control in aged alumina-forming austenitic stainless steels Fe-15Cr-25Ni-3Al-NbWCu by W addition and its effect on the mechanical properties[J]. Materials Characterization, 2020, 163: 110233. doi: 10.1016/j.matchar.2020.110233
|
[22] |
MA K K, WEN H M, HU T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy[J]. Acta Materialia, 2014, 62: 141-155. doi: 10.1016/j.actamat.2013.09.042
|
[23] |
WEN D H, LI Z, JIANG B B, et al. Effects of Nb/Ti/V/Ta on phase precipitation and oxidation resistance at 1073 K in alumina-forming austenitic stainless steels[J]. Materials Characterization, 2018, 144: 86-98. doi: 10.1016/j.matchar.2018.07.007
|
[24] |
NIKULIN I, KIPELOVA A, KAIBYSHEV R. Effect of high-temperature exposure on the mechanical properties of 18Cr–8Ni–W–Nb–V–N stainless steel[J]. Materials Science and Engineering:A, 2012, 554: 61-66. doi: 10.1016/j.msea.2012.06.011
|