Advance Search
Volume 44 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
Yuan Zhanhang. Analysis and Suppression of Load Oscillation in Underwater Fuel Assembly Transfer System[J]. Nuclear Power Engineering, 2023, 44(6): 206-212. doi: 10.13832/j.jnpe.2023.06.0206
Citation: Yuan Zhanhang. Analysis and Suppression of Load Oscillation in Underwater Fuel Assembly Transfer System[J]. Nuclear Power Engineering, 2023, 44(6): 206-212. doi: 10.13832/j.jnpe.2023.06.0206

Analysis and Suppression of Load Oscillation in Underwater Fuel Assembly Transfer System

doi: 10.13832/j.jnpe.2023.06.0206
  • Received Date: 2023-03-01
  • Rev Recd Date: 2023-05-12
  • Publish Date: 2023-12-15
  • The stability of the underwater fuel assembly transfer system in nuclear power plant is essential to ensure the safety of the fuel assemblies loaded. Because of the flexibility of the steel wire rope, it is difficult to avoid the oscillation of the underwater running load trolley driven by the motor in the system. Considering the elasticity of the steel wire rope, a complete dynamic model of the underwater running load trolley was established. After decomposing the speed of the load trolley and simplifying it appropriately, the complete dynamic model was transformed into a simplified model, and the analysis and calibration of control system were carried out accordingly. A series notch filter was designed based on the simplified model to suppress the oscillation of the load trolley. The designed notch filter was applied to the complete dynamic model for simulation calculation. The simulation results showed that the oscillation of the load trolley was effectively suppressed, and the effectiveness of the simplified model was also verified. The analysis method in this paper can effectively suppress the oscillation of the load trolley during low-speed operation, which is simple, effective, and easy to implement in engineering.

     

  • loading
  • [1]
    任宪常,何英勇,王欢,等. 压水堆核电厂乏燃料转运系统工艺分析[J]. 起重运输机械,2014(4): 106-110.
    [2]
    侯硕,贾晓峰. 压水堆核电站燃料厂房核燃料转运系统的抗震分析[J]. 核科学与工程,2013, 33(3): 314-320.
    [3]
    袁亮,杨洁. 乏燃料转运设备跌落冲击数值模拟研究[J]. 核动力工程,2022, 43(2): 122-125.
    [4]
    袁占航,李运华,刘昊东. 水下燃料组件转运系统耦合振动分析[J]. 北京航空航天大学学报,2022, 48(4): 602-608.
    [5]
    陈飞,刘吉双,叶清,等. 压水堆燃料转运装置运输小车超载分析[J]. 核动力工程,2017, 38(3): 119-122.
    [6]
    孙宇, 王志文, 孔凡莉, 等. 交流伺服系统设计指南[M]. 北京: 机械工业出版社, 2013: 147-154.
    [7]
    MUSZNSKI R, DESKUR J. Damping of torsional vibrations in high-dynamic industrial drives[J]. IEEE Transactions on Industrial Electronics, 2010, 57(2): 554-552.
    [8]
    郎志,杨明,徐殿国. 双惯量弹性系统负载扰动观测器设计研究[J]. 电工技术学报,2016, 31(S2): 84-91.
    [9]
    OHISHI K. Robust position servo system based on vibration suppression control for industrial robotics[C]//Proceedings of 2010 International Power Electronics Conference. Sapporo, Japan: IEEE, 2010: 2230-2237.
    [10]
    ZHENG Q L, GAO Z Q. On observer-based active vibration control of two-inertia systems[C]//Proceedings of 2013 American Control Conference. Washington, DC, USA: IEEE, 2013: 6619-6624.
    [11]
    JI J K, SUL S K. Kalman filter and LQ based speed controller for torsional vibration suppression in a 2-mass motor drive system[J]. IEEE Transactions on Industrial Electronics, 1995, 42(6): 564-571. doi: 10.1109/41.475496
    [12]
    SZABAT K. Direct and indirect adaptive control of a two-mass drive system-a comparison[C]//Proceedings of 2008 IEEE International Symposium on Industrial Electronics. Cambridge, UK: IEEE, 2008: 564-569.
    [13]
    ORLOWSKA-KOWALSKA T, SZABAT K. Control of the drive system with stiff and elastic couplings using adaptive neuro-fuzzy approach[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 228-240. doi: 10.1109/TIE.2006.888787
    [14]
    KORONKI P, HASHIMOTO H, UTKIN V. Direct torsion control of flexible shaft in an observer-based discrete-time sliding mode[J]. IEEE Transactions on Industrial Electronics, 1998, 45(2): 291-296. doi: 10.1109/41.681228
    [15]
    杨明,曹佳,徐殿国. 基于输入整形技术的交流伺服系统抖动抑制[J]. 电工技术学报,2018, 33(21): 4979-4986.
    [16]
    方智毅,许雄. 基于输入整形法的伺服系统挠性振动抑制[J]. 微电机,2014, 47(8): 53-56.
    [17]
    KUNERA V, HROMCIK M. Feed-forward delay-based input shaper confrontation with active feedback control[C]//Proceedings of the IEEE 6th International Conference on Intelligent Data Acquisition and Advanced Computing Systems. Prague, Czech Republic: IEEE, 2011: 258-262.
    [18]
    廖能超,周志琨,赵现朝,等. 陷波器在低刚性伺服系统共振抑制的应用[J]. 机械设计与研究,2015, 31(3): 36-39.
    [19]
    MURPHY B R, WATANABE I. Digital shaping filters for reducing machine vibration[J]. IEEE Transactions on Robotics and Automation, 1992, 8(2): 285-289. doi: 10.1109/70.134281
    [20]
    CHOI J W, LEE S C. Antiwindup strategy for PI-type speed controller[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 2039-2046. doi: 10.1109/TIE.2009.2016514
    [21]
    DONG R G. Effective mass and damping of submerged structures: UCRL-52342[R]. Livermore: University of California, 1978: 10.
    [22]
    沈勇,王昌明,狄长安,等. 水中弹丸运动状态分析及试验研究[J]. 弹箭与制导学报,2002, 22(1): 45-47. doi: 10.15892/j.cnki.djzdxb.2002.01.012
    [23]
    高涵,张明路,张小俊,等. 水下机械手动力学模型及力矩影响研究[J]. 机械设计与制造,2017(3): 68-71. doi: 10.19356/j.cnki.1001-3997.2017.03.018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (74) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return