Advance Search
Volume 44 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
Zhao Quanbin, Zhao Kai, Chong Daotong, Liu Xiuting, Zhang Dalin, Zhuo Wenbin. Study on Off-design Operating Characteristics of Cold-end System for SCO2 Cycle Matching Fluoride-salt-cooled High-temperature Small Reactor[J]. Nuclear Power Engineering, 2023, 44(6): 242-248. doi: 10.13832/j.jnpe.2023.06.0242
Citation: Zhao Quanbin, Zhao Kai, Chong Daotong, Liu Xiuting, Zhang Dalin, Zhuo Wenbin. Study on Off-design Operating Characteristics of Cold-end System for SCO2 Cycle Matching Fluoride-salt-cooled High-temperature Small Reactor[J]. Nuclear Power Engineering, 2023, 44(6): 242-248. doi: 10.13832/j.jnpe.2023.06.0242

Study on Off-design Operating Characteristics of Cold-end System for SCO2 Cycle Matching Fluoride-salt-cooled High-temperature Small Reactor

doi: 10.13832/j.jnpe.2023.06.0242
  • Received Date: 2022-12-02
  • Rev Recd Date: 2022-12-28
  • Publish Date: 2023-12-15
  • The small power generation system of supercritical carbon dioxide (SCO2) Brayton cycle coupled with fluoride-salt-cooled high-temperature small reactor is considered to have a good development prospect in the field of small nuclear power/nuclear power generation because of its high efficiency, compactness and high inherent safety. In this paper, the optimization design and off-design operation characteristics of cold-side for supercritical carbon dioxide Brayton cycle are studied. Based on the Fluoride-salt-cooled high-temperature small reactor characteristics and environment conditions, various SCO2 cycle configurations are compared, and it is found that the main compressor interstage cooling and reheat can improve thermal efficiency, but increase of limited, and extra heat exchangers are added. Then, the off-design operation characteristics of SCO2 cycle cold side system is investigated. The operation mode with constant pressure ratio not only has high cycle efficiency, but also has a wide adaptability range to the temperature change of the environment. Therefore, the constant pressure ratio operation mode is recommended for SCO2 cycle when the ambient temperature changes.

     

  • loading
  • [1]
    周杰,韩伟实. 中、小型核动力应用前瞻[J]. 中国科技信息,2007(1): 244-245,247. doi: 10.3969/j.issn.1001-8972.2007.01.136
    [2]
    杨军,张恩昊,郭志恒,等. 全球核能科技前沿综述[J]. 科技导报,2020, 38(20): 35-49. doi: 10.3981/j.issn.1000-7857.2020.20.010
    [3]
    LATURKAR K, LATURKAR K. Advances in very small modular nuclear reactors[J]. Chemical Engineering Progress, 2022, 118(4): 44-51.
    [4]
    GREENE S, GEHIN J, HOLCOMB D, et al. Pre-conceptual design of a fluoride-salt-cooled small modular advanced high temperature reactor (SmAHTR):ORNL/TM-2010/199[R]. Oak Ridge: Oak Ridge National Laboratory, 2011.
    [5]
    MACDONALD R. Investigation and design of a secure, transportable fluoride-salt-cooled high-temperature reactor (TFHR) for isolated locations[D]. Cambridge: Massachusetts Institute of Technology, 2014.
    [6]
    DOSTAL V. A supercritical carbon dioxide cycle for next generation nuclear reactors[D]. Cambridge: Massachusetts Institute of Technology, 2004.
    [7]
    BRUN K, FRIEDMAN P, DENNIS R. Fundamentals and applications of supercritical carbon dioxide (sCO2) based power cycles[M]. Duxford: Woodhead Publishing, 2017: 32-35.
    [8]
    谢永慧,王雨琦,张荻,等. 超临界二氧化碳布雷顿循环系统及透平机械研究进展[J]. 中国电机工程学报,2018, 38(24): 7276-7286. doi: 10.13334/j.0258-8013.pcsee.180264
    [9]
    MOISSEYTSEV A, SIENICKI J J. Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor[J]. Nuclear Engineering and Design, 2009, 239(7): 1362-1371. doi: 10.1016/j.nucengdes.2009.03.017
    [10]
    MOISSEYTSEV A, SIENICKI J J. Development of a plant dynamics computer code for analysis of a supercritical carbon dioxide brayton cycle energy converter coupled to a natural circulation lead-cooled fast reactor:ANL-06/27[R]. Argonne: Argonne National Laboratory, 2007.
    [11]
    杨红义,杨晓燕,张东旭,等. 基于超临界二氧化碳动力转换系统的革新型钠冷快堆关键技术研究[J]. 中国科学:技术科学,2021, 51(3): 324-340.
    [12]
    黄彦平,王俊峰. 超临界二氧化碳在核反应堆系统中的应用[J]. 核动力工程,2012, 33(3): 21-27. doi: 10.3969/j.issn.0258-0926.2012.03.005
    [13]
    石明珠. 核动力船舰超临界二氧化碳循环系统建模及性能分析[D]. 南京: 东南大学, 2020.
    [14]
    AHN Y, BAE S J, KIM M, et al. Review of supercritical CO2 power cycle technology and current status of research and development[J]. Nuclear Engineering and Technology, 2015, 47(6): 647-661. doi: 10.1016/j.net.2015.06.009
    [15]
    CRESPI F, GAVAGNIN G, SÁNCHEZ D, et al. Supercritical carbon dioxide cycles for power generation: A review[J]. Applied Energy, 2017, 195: 152-183. doi: 10.1016/j.apenergy.2017.02.048
    [16]
    吴新汶,邵应娟,钟文琪. 600MW煤基超临界二氧化碳循环PCHE预冷器设计及传热特性研究[J]. 中国电机工程学报,2023, 43(15): 5916-5925.
    [17]
    COOKE D H. Modeling of off-design multistage turbine pressures by stodola’s ellipse[C]. Energy Incorporated PEPSE User’s Group Meeting, Richmond, VA, 1983: 2-3
    [18]
    DYREBY J J. Modeling the supercritical carbon dioxide Brayton cycle with recompression[D]. Madison: University of Wisconsin, 2014.
    [19]
    MA Y G, MOROSUK T, LIU M, et al. Investigation of off-design characteristics of an improved recompression supercritical carbon dioxide cycle for concentrated solar power application[J]. International Journal of Energy Research, 2021, 45(2): 1818-1835. doi: 10.1002/er.5857
    [20]
    王雪,孙恩慧,徐进良,等. 超临界二氧化碳循环关键部件成本模型研究进展[J]. 中国电机工程学报,2022, 42(2): 650-662.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (688) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return