Advance Search
Volume 44 Issue S1
Jun.  2023
Turn off MathJax
Article Contents
Zeng Chen, Zhang Rui, Liu Maolong, Zhang Weihao, Li Junlong, Liu Limin, Liu Li, Gu Hanyang. Influence of Different Turbulence Models on Simulation of Lead-Bismuth Solidification[J]. Nuclear Power Engineering, 2023, 44(S1): 40-45. doi: 10.13832/j.jnpe.2023.S1.0040
Citation: Zeng Chen, Zhang Rui, Liu Maolong, Zhang Weihao, Li Junlong, Liu Limin, Liu Li, Gu Hanyang. Influence of Different Turbulence Models on Simulation of Lead-Bismuth Solidification[J]. Nuclear Power Engineering, 2023, 44(S1): 40-45. doi: 10.13832/j.jnpe.2023.S1.0040

Influence of Different Turbulence Models on Simulation of Lead-Bismuth Solidification

doi: 10.13832/j.jnpe.2023.S1.0040
  • Received Date: 2022-12-02
  • Rev Recd Date: 2023-03-27
  • Publish Date: 2023-06-15
  • To study the influence of different turbulence models and turbulence Prandtl number (Prt) models on the simulation of lead-bismuth solidification behavior, this paper uses FLUENT to simulate the flow solidification behavior of lead-bismuth (Pb-Bi) inside a tube. The simulation results show that although the differences between the shear stress transfer (k-ω SST), k-ε and Reynolds stress (RSM) models in simulating Pb-Bi heat transfer can be ignored, there are significant differences in the simulation of the temperature and pressure fields during the phase change, thus the turbulence model should be carefully selected. In addition, the study on the simulation of Pb-Bi solidification using different Prt models shows no significant difference.

     

  • loading
  • [1]
    ALEMBERTI A, SMIRNOV V, SMITH C F, et al. Overview of lead-cooled fast reactor activities[J]. Progress in Nuclear Energy, 2014, 77: 300-307. doi: 10.1016/j.pnucene.2013.11.011
    [2]
    WANG G, NIU S Q, CAO R F. Summary of severe accident issues of LBE-cooled reactors[J]. Annals of Nuclear Energy, 2018, 121: 531-539. doi: 10.1016/j.anucene.2018.08.015
    [3]
    LE BRUN N, HEWITT G F, MARKIDES C N. Transient freezing of molten salts in pipe-flow systems: application to the direct reactor auxiliary cooling system (DRACS)[J]. Applied Energy, 2017, 186: 56-67. doi: 10.1016/j.apenergy.2016.09.099
    [4]
    ACHUTHAN N, MELICHAR T, PROFIR M, et al. Computational fluid dynamics modelling of lead natural convection and solidification in a pool type geometry[J]. Nuclear Engineering and Design, 2021, 376: 111104. doi: 10.1016/j.nucengdes.2021.111104
    [5]
    TARANTINO M, ROELOFS F, SHAMS A, et al. SESAME project: advancements in liquid metal thermal hydraulics experiments and simulations[J]. EPJ Nuclear Sciences & Technologies, 2020, 6: 18.
    [6]
    KÖNIG-HAAGEN A, FRANQUET E, PERNOT E, et al. A comprehensive benchmark of fixed-grid methods for the modeling of melting[J]. International Journal of Thermal Sciences, 2017, 118: 69-103. doi: 10.1016/j.ijthermalsci.2017.04.008
    [7]
    VOLLER V R, SWAMINATHAN C R, THOMAS B G. Fixed grid techniques for phase change problems: a review[J]. International Journal for Numerical Methods in Engineering, 1990, 30(4): 875-898. doi: 10.1002/nme.1620300419
    [8]
    VOLLER V R, PRAKASH C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1719. doi: 10.1016/0017-9310(87)90317-6
    [9]
    BENNON W D, INCROPERA F P. A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems—I. Model formulation[J]. International Journal of Heat and Mass Transfer, 1987, 30(10): 2161-2170. doi: 10.1016/0017-9310(87)90094-9
    [10]
    BENNON W D, INCROPERA F P. A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems—II. Application to solidification in a rectangular cavity[J]. International Journal of Heat and Mass Transfer, 1987, 30(10): 2171-2187. doi: 10.1016/0017-9310(87)90095-0
    [11]
    CARMAN P C. Fluid flow through granular beds[J]. Transactions of the Institution of Chemical Engineers, 1937, 15: 150-166.
    [12]
    MA Z H, ZHANG Y W. Solid velocity correction schemes for a temperature transforming model for convection phase change[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2006, 16(2): 204-225.
    [13]
    ROSE M E. A method for calculating solutions of parabolic equations with a free boundary[J]. Mathematics of Computation, 1960, 14(71): 249-256. doi: 10.1090/S0025-5718-1960-0115283-8
    [14]
    VOLLER V R. An overview of numerical methods for solving phase change problems[M]//MINKOWYCZ W J, SPARROW E W. Advanced in Numerical Heat Transfer. Washington: Taylor & Francis, 1997: 341-380.
    [15]
    Organisation for Economic Co-Operation and Development. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies-2015 edition: No. NEA-7268[R]. Paris: Organisation for Economic Co-Operation and Development, 2015.
    [16]
    LIU Z P, HUANG D S, WANG C L, et al. Flow and heat transfer analysis of lead–bismuth eutectic flowing in a tube under rolling conditions[J]. Nuclear Engineering and Design, 2021, 382: 111373. doi: 10.1016/j.nucengdes.2021.111373
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (193) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return