Citation: | Zeng Chen, Zhang Rui, Liu Maolong, Zhang Weihao, Li Junlong, Liu Limin, Liu Li, Gu Hanyang. Influence of Different Turbulence Models on Simulation of Lead-Bismuth Solidification[J]. Nuclear Power Engineering, 2023, 44(S1): 40-45. doi: 10.13832/j.jnpe.2023.S1.0040 |
[1] |
ALEMBERTI A, SMIRNOV V, SMITH C F, et al. Overview of lead-cooled fast reactor activities[J]. Progress in Nuclear Energy, 2014, 77: 300-307. doi: 10.1016/j.pnucene.2013.11.011
|
[2] |
WANG G, NIU S Q, CAO R F. Summary of severe accident issues of LBE-cooled reactors[J]. Annals of Nuclear Energy, 2018, 121: 531-539. doi: 10.1016/j.anucene.2018.08.015
|
[3] |
LE BRUN N, HEWITT G F, MARKIDES C N. Transient freezing of molten salts in pipe-flow systems: application to the direct reactor auxiliary cooling system (DRACS)[J]. Applied Energy, 2017, 186: 56-67. doi: 10.1016/j.apenergy.2016.09.099
|
[4] |
ACHUTHAN N, MELICHAR T, PROFIR M, et al. Computational fluid dynamics modelling of lead natural convection and solidification in a pool type geometry[J]. Nuclear Engineering and Design, 2021, 376: 111104. doi: 10.1016/j.nucengdes.2021.111104
|
[5] |
TARANTINO M, ROELOFS F, SHAMS A, et al. SESAME project: advancements in liquid metal thermal hydraulics experiments and simulations[J]. EPJ Nuclear Sciences & Technologies, 2020, 6: 18.
|
[6] |
KÖNIG-HAAGEN A, FRANQUET E, PERNOT E, et al. A comprehensive benchmark of fixed-grid methods for the modeling of melting[J]. International Journal of Thermal Sciences, 2017, 118: 69-103. doi: 10.1016/j.ijthermalsci.2017.04.008
|
[7] |
VOLLER V R, SWAMINATHAN C R, THOMAS B G. Fixed grid techniques for phase change problems: a review[J]. International Journal for Numerical Methods in Engineering, 1990, 30(4): 875-898. doi: 10.1002/nme.1620300419
|
[8] |
VOLLER V R, PRAKASH C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1719. doi: 10.1016/0017-9310(87)90317-6
|
[9] |
BENNON W D, INCROPERA F P. A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems—I. Model formulation[J]. International Journal of Heat and Mass Transfer, 1987, 30(10): 2161-2170. doi: 10.1016/0017-9310(87)90094-9
|
[10] |
BENNON W D, INCROPERA F P. A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems—II. Application to solidification in a rectangular cavity[J]. International Journal of Heat and Mass Transfer, 1987, 30(10): 2171-2187. doi: 10.1016/0017-9310(87)90095-0
|
[11] |
CARMAN P C. Fluid flow through granular beds[J]. Transactions of the Institution of Chemical Engineers, 1937, 15: 150-166.
|
[12] |
MA Z H, ZHANG Y W. Solid velocity correction schemes for a temperature transforming model for convection phase change[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2006, 16(2): 204-225.
|
[13] |
ROSE M E. A method for calculating solutions of parabolic equations with a free boundary[J]. Mathematics of Computation, 1960, 14(71): 249-256. doi: 10.1090/S0025-5718-1960-0115283-8
|
[14] |
VOLLER V R. An overview of numerical methods for solving phase change problems[M]//MINKOWYCZ W J, SPARROW E W. Advanced in Numerical Heat Transfer. Washington: Taylor & Francis, 1997: 341-380.
|
[15] |
Organisation for Economic Co-Operation and Development. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies-2015 edition: No. NEA-7268[R]. Paris: Organisation for Economic Co-Operation and Development, 2015.
|
[16] |
LIU Z P, HUANG D S, WANG C L, et al. Flow and heat transfer analysis of lead–bismuth eutectic flowing in a tube under rolling conditions[J]. Nuclear Engineering and Design, 2021, 382: 111373. doi: 10.1016/j.nucengdes.2021.111373
|