Advance Search
Volume 44 Issue S1
Jun.  2023
Turn off MathJax
Article Contents
Zhang Lin, Liu Dalin, Deng Chang, Liu Xiaojing. Kinetic Mechanism Study of Lead-Bismuth Alloy Solidification in Lead-Water Interaction[J]. Nuclear Power Engineering, 2023, 44(S1): 51-56. doi: 10.13832/j.jnpe.2023.S1.0051
Citation: Zhang Lin, Liu Dalin, Deng Chang, Liu Xiaojing. Kinetic Mechanism Study of Lead-Bismuth Alloy Solidification in Lead-Water Interaction[J]. Nuclear Power Engineering, 2023, 44(S1): 51-56. doi: 10.13832/j.jnpe.2023.S1.0051

Kinetic Mechanism Study of Lead-Bismuth Alloy Solidification in Lead-Water Interaction

doi: 10.13832/j.jnpe.2023.S1.0051
  • Received Date: 2023-02-21
  • Rev Recd Date: 2023-03-27
  • Publish Date: 2023-06-15
  • To obtain the kinetic mechanism of lead-bismuth alloy solidification during the lead-water interaction and understand the microscopic dendrite growth process, the average flow velocity equation of lead-bismuth alloy between dendrites was developed by analyzing the natural convection of lead-bismuth melt and its influence on the solidification front. In addition, the dendrite growth process was simulated by using the phase field method. The results showed that the fast growth zone of dendrites was markedly tilted toward the incoming flow direction under the joint action of flow fields in two directions. This work can provide kinetic mechanism analysis for lead-bismuth alloy solidification, and provide the theoretical basis for the safe operation of lead-based reactors.

     

  • loading
  • [1]
    周丽丽. 液态金属铅凝固过程中微观结构演变特性的模拟研究[D]. 长沙: 湖南大学, 2012: 8-23.
    [2]
    王龙. 先进核反应堆用铅铋合金热物理性能实验研究[D]. 合肥: 合肥工业大学, 2014: 7-10.
    [3]
    PROFIR M, MOREAU V, MELICHAR T. Numerical and experimental campaigns for lead solidification modelling and testing[J]. Nuclear Engineering and Design, 2020, 359: 110482. doi: 10.1016/j.nucengdes.2019.110482
    [4]
    IANNONE M, DOFEK I, BORREANI W, et al. Development of CFD models and pre-test calculations for thermal-hydraulics and freezing experiments on Lead coolant[C]//ICNENE, Bled, Slovenia, September 11-14, 2017. Bled: ASME, 2017: 445-465.
    [5]
    ISKHAKOV A S, MELIKHOV V I, MELIKHOV O I. Hugoniot analysis of energetic molten lead-water interaction[J]. Annals of Nuclear Energy, 2019, 129: 437-449. doi: 10.1016/j.anucene.2019.02.018
    [6]
    洪晓,王德喜. 电熔镁熔坨自然冷却与节能换热冷却过程研究分析[J]. 节能,2021, 40(10): 37-41. doi: 10.3969/j.issn.1004-7948.2021.10.010
    [7]
    胡汉起. 金属凝固原理[M]. 第二版. 北京: 机械工业出版社, 2000: 205-214.
    [8]
    岳晨冲, 陈刘利, 吕科锋, 等. 基于KYLIN-Ⅱ热工回路阻力分析与稳态自然循环研究[C]//第十四届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室2015年度学术年会论文集. 北京: 清华大学先进反应堆工程与安全教育部重点实验室, 2015: 337-341.
    [9]
    刘芳慧. 相场法模拟二元合金枝晶生长[D]. 沈阳: 沈阳师范大学, 2015: 24-26.
    [10]
    吕冬兰. 流场作用下合金枝晶生长的相场法数值模拟[D]. 南昌: 南昌航空大学, 2009: 33-39.
    [11]
    龙文元,吕冬兰,夏春,等. 强迫对流影响二元合金非等温凝固枝晶生长的相场法模拟[J]. 物理学报,2009, 58(11): 7802-7808. doi: 10.7498/aps.58.7802
    [12]
    KOBAYASHI R. Modeling and numerical simulations of dendritic crystal growth[J]. Physica D:Nonlinear Phenomena, 1993, 63(3-4): 410-423. doi: 10.1016/0167-2789(93)90120-P
    [13]
    刘达霖,刘晓晶,黄彦平,等. 铅水反应中铅铋合金凝固的数值模拟[J]. 核动力工程,2022, 43(3): 7-14. doi: 10.13832/j.jnpe.2022.03.0007
    [14]
    吴佳文. 基于元胞自动机的BGA锡铅焊球快速凝固过程模拟研究[D]. 哈尔滨: 哈尔滨理工大学, 2021: 56-59.
    [15]
    陈慧琴. 傅里叶谱方法下相场模型的数值模拟[D]. 太原: 太原科技大学, 2020: 51-58.
    [16]
    王同敏,许菁菁,李军,等. 金属合金枝晶生长同步辐射X射线实时成像观察[J]. 中国科学:技术科学,2010, 40(10): 1214-1220.
    [17]
    许菁菁,王同敏,谢红兰,等. Sn-12%Bi合金二次枝晶生长行为的实时成像[J]. 核技术,2010, 33(6): 447-450.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (168) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return