Advance Search
Volume 44 Issue S1
Jun.  2023
Turn off MathJax
Article Contents
Zhang Tao, Han Wenbin, Shen Pengfei, Huang Shanfang, Wang Kan. Neutronic and Thermal-Hydraulic Performance Analysis of Helical Cruciform Fuel Rods[J]. Nuclear Power Engineering, 2023, 44(S1): 69-74. doi: 10.13832/j.jnpe.2023.S1.0069
Citation: Zhang Tao, Han Wenbin, Shen Pengfei, Huang Shanfang, Wang Kan. Neutronic and Thermal-Hydraulic Performance Analysis of Helical Cruciform Fuel Rods[J]. Nuclear Power Engineering, 2023, 44(S1): 69-74. doi: 10.13832/j.jnpe.2023.S1.0069

Neutronic and Thermal-Hydraulic Performance Analysis of Helical Cruciform Fuel Rods

doi: 10.13832/j.jnpe.2023.S1.0069
  • Received Date: 2023-02-21
  • Rev Recd Date: 2023-05-24
  • Publish Date: 2023-06-15
  • To analyze the neutronic and thermal-hydraulic performance of helical cruciform fuel (HCF) rods, numerical simulations using the CAD (computer-aided design)-based Reactor Monte Carlo code RMC and the commercial computational fluid dynamics (CFD) software Fluent were conducted, and the results were compared with those of traditional cylindrical and untwisted cruciform fuel rods. The results show that the helical cruciform structure slightly reduces the reactivity and increases the radial power peaking factor. Compared with cylindrical fuel rods, the HCF rods can enhance coolant mixing and heat transfer due to their transverse flow characteristics. In the 7-rods assembly calculation, the mean and peak temperatures of HCF rods are reduced by about 4 K.

     

  • loading
  • [1]
    邢继,高力,霍小东,等. “碳达峰、碳中和”背景下核能利用浅析[J]. 核科学与工程,2022, 42(1): 10-17. doi: 10.3969/j.issn.0258-0918.2022.01.002
    [2]
    DIAKOV A C, DMITRIEV A M, KANG J, et al. Feasibility of converting Russian icebreaker reactors from HEU to LEU fuel[J]. Science & Global Security, 2006, 14(1): 33-48.
    [3]
    AGEENKOV V I, VOLKOV V S, SOLONIN M I, et al. Parameters and technology for fabricating PIK reactor fuel elements[J]. Atomic Energy, 2002, 92(6): 468-474. doi: 10.1023/A:1020262131193
    [4]
    BOL’SHAKOV V V, BASHKIRTSEV S M, KOBZAR’ L L, et al. Experimental study of burnout in channels with twisted fuel rods[J]. Thermal Engineering, 2007, 54(5): 386-389. doi: 10.1134/S0040601507050096
    [5]
    CONBOY T M. Assessment of helical-cruciform fuel rods for high power density LWRs[D]. Cambridge: Massachusetts Institute of Technology, 2010.
    [6]
    ZHANG Q, LIU L, XIAO Y, et al. Experimental study on the transverse mixing of 5 × 5 helical cruciform fuel assembly by wire mesh sensor[J]. Annals of Nuclear Energy, 2021, 164: 108582. doi: 10.1016/j.anucene.2021.108582
    [7]
    SHIRVAN K, KAZIMI M S. Nuclear design of helical cruciform fuel rods[C]//PHYSOR 2012–Advances in Reactor Physics–Linking Research, Industry, and Education. Knoxville: American Nuclear Society, 2012.
    [8]
    SHIRVAN K, KAZIMI M S. Three dimensional considerations in thermal-hydraulics of helical cruciform fuel rods for LWR power uprates[J]. Nuclear Engineering and Design, 2014, 270: 259-272. doi: 10.1016/j.nucengdes.2014.01.015
    [9]
    蔡伟华,韦徵圣,李石磊,等. 5×5花瓣形燃料棒束组件内单相流动与换热特性数值模拟研究[J]. 原子能科学技术,2021, 55(11): 1939-1949. doi: 10.7538/yzk.2021.youxian.0593
    [10]
    刘畅. 螺旋型燃料棒束内流动与换热特性数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2020.
    [11]
    FANG Y L, QIN H, WANG C L, et al. Numerical investigation on thermohydraulic performance of high temperature hydrogen in twisted rod channels[J]. Annals of Nuclear Energy, 2021, 161: 108434. doi: 10.1016/j.anucene.2021.108434
    [12]
    HARTMANN C, TOTEMEIER A, HOLCOMBE S, et al. Measurement station for interim inspections of Lightbridge metallic fuel rods at the Halden boiling water reactor[J]. EPJ Web of Conferences, 2018, 170: 04011. doi: 10.1051/epjconf/201817004011
    [13]
    University of Wisconsin–Madison. DAGMC: direct accelerated geometry Monte Carlo[EB/OL]. (2021-07-08)[2022-05-05]. https://svalinn.github.io/DAGMC.
    [14]
    LOVECKÝ M, ZÁVORKA J, VIMPEL J. VVER-1000 fuel assembly model in CAD-based unstructured mesh for MCNP6[J]. Kerntechnik, 2019, 84(4): 262-266. doi: 10.3139/124.190041
    [15]
    WU Y C, SONG J, ZHENG H Q, et al. CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC[J]. Annals of Nuclear Energy, 2015, 82: 161-168. doi: 10.1016/j.anucene.2014.08.058
    [16]
    TALAMO A, GOHAR Y, LEPPÄNEN J. SERPENT validation and optimization with mesh adaptive search on stereolithography geometry models[J]. Annals of Nuclear Energy, 2018, 115: 619-632. doi: 10.1016/j.anucene.2018.01.012
    [17]
    WANG K, LI Z G, SHE D, et al. RMC–a Monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82: 121-129. doi: 10.1016/j.anucene.2014.08.048
    [18]
    SHEN P F, LIANG J G, LIU S C, et al. Implementation and verification of the DAGMC module in Monte Carlo code RMC[C]//Proceedings of the 29th International Conference on Nuclear Engineering. New York: American Society of Mechanical Engineers, 2022.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article Metrics

    Article views (276) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return