Citation: | Feng Mengjiao, Liu Minyun, Huang Shanfang, Huang YanPing. Design and Performance Investigation of Supercritical Carbon Dioxide Ejector[J]. Nuclear Power Engineering, 2023, 44(S1): 81-87. doi: 10.13832/j.jnpe.2023.S1.0081 |
[1] |
吴攀,高春天,单建强. 超临界二氧化碳布雷顿循环在核能领域的应用[J]. 现代应用物理,2019, 10(3): 79-88.
|
[2] |
邹久朋,高慎琴. 蒸汽喷射压缩器的实验研究[J]. 石油化工设备,1987, 16(8): 13-17,50.
|
[3] |
张于峰,赵薇,田琦,等. 喷射器性能及太阳能喷射制冷系统工质的优化[J]. 太阳能学报,2007, 28(2): 130-136. doi: 10.3321/j.issn:0254-0096.2007.02.004
|
[4] |
CAO H S, TER BRAKE H J M. Progress and challenges in utilization of ejectors for cryogenic cooling[J]. Applied Thermal Engineering, 2020, 167: 114783. doi: 10.1016/j.applthermaleng.2019.114783
|
[5] |
严正,陈嘉翔,尚久浩. 装锅器用汽—液喷射器工作特性分析及实验研究[J]. 西北轻工业学院学报,1997, 15(3): 14-18.
|
[6] |
袁惠达,杨磊. R12喷射制冷系统最佳参数的实验研究[J]. 西安冶金建筑学院学报,1989, 21(4): 43-50.
|
[7] |
BOULENOUAR M, OUADHA A. CFD-Exergy analysis of the flow in a supersonic steam ejector[J]. Journal of Physics:Conference Series, 2015, 574(1): 012123.
|
[8] |
ALLOUCHE Y, BOUDEN C, VARGA S. A CFD analysis of the flow structure inside a steam ejector to identify the suitable experimental operating conditions for a solar-driven refrigeration system[J]. International Journal of Refrigeration, 2014, 39: 186-195. doi: 10.1016/j.ijrefrig.2013.07.027
|
[9] |
徐鑫. 喷射器内部流动及设计方法的研究[D]. 武汉: 华中科技大学, 2012.
|
[10] |
张琦,霍杰鹏,王汝武,等. 蒸汽喷射器的CFD数值模拟及其性能[J]. 东北大学学报:自然科学版,2010, 31(3): 398-401.
|
[11] |
王景富,许恒,张东洋,等. 蒸汽喷射压缩器性能的三维数值模拟[J]. 热能动力工程,2022, 37(2): 79-83. doi: 10.16146/j.cnki.rndlgc.2022.02.011
|
[12] |
OUZZANE M, AIDOUN Z. Model development and numerical procedure for detailed ejector analysis and design[J]. Applied Thermal Engineering, 2003, 23(18): 2337-2351. doi: 10.1016/S1359-4311(03)00208-4
|
[13] |
丁宝存,杨洪源,张琨. 喷射器理论发展的论述[J]. 区域供热,2013(1): 65-67,74. doi: 10.3969/j.issn.1005-2453.2013.01.011
|
[14] |
TASHTOUSH B M, AL-NIMR M A, KHASAWNEH M A. A comprehensive review of ejector design, performance, and applications[J]. Applied Energy, 2019, 240: 138-172. doi: 10.1016/j.apenergy.2019.01.185
|
[15] |
TALEGHANI S T, SORIN M, PONCET S. Modeling of two-phase transcritical CO2 ejectors for on-design and off-design conditions[J]. International Journal of Refrigeration, 2018, 87: 91-105. doi: 10.1016/j.ijrefrig.2017.10.025
|
[16] |
邓小妹. 基于布雷顿动力循环的超临界二氧化碳喷射器设计及仿真分析[D]. 济南: 山东大学, 2021.
|
[17] |
高宇明,王建军. 喷射器内流场数值分析[J]. 应用科技,2016, 43(6): 72-77,86.
|
[18] |
SONG Y L, MA Y, WANG H D, et al. Review on the simulation models of the two-phase-ejector used in the transcritical carbon dioxide systems[J]. International Journal of Refrigeration, 2020, 119: 434-447. doi: 10.1016/j.ijrefrig.2020.04.029
|
[19] |
LI R X, YAN J, REDDICK C. Optimization of three key ejector geometries under fixed and varied operating conditions: A numerical study[J]. Applied Thermal Engineering, 2022, 211: 118537. doi: 10.1016/j.applthermaleng.2022.118537
|
[20] |
ZHENG L X, HU H W, WANG W B, et al. Study on flow distribution and structure optimization in a mix chamber and diffuser of a CO2 two-phase ejector[J]. Mathematics, 2022, 10(5): 693. doi: 10.3390/math10050693
|
[21] |
LI Y Q, SHEN S Q, NIU C, et al. The effect of different pressure conditions on shock waves in a supersonic steam ejector[J]. Energies, 2022, 15(8): 2903. doi: 10.3390/en15082903
|