Advance Search
Volume 44 Issue S1
Jun.  2023
Turn off MathJax
Article Contents
Wu Songling, Ye Zhutao, Li Aihua, Li Gang, Liu Xiaozhen. Research on Influence of Structural Parameters on Shielding Efficiency of Al-based Foam Metal[J]. Nuclear Power Engineering, 2023, 44(S1): 125-130. doi: 10.13832/j.jnpe.2023.S1.0125
Citation: Wu Songling, Ye Zhutao, Li Aihua, Li Gang, Liu Xiaozhen. Research on Influence of Structural Parameters on Shielding Efficiency of Al-based Foam Metal[J]. Nuclear Power Engineering, 2023, 44(S1): 125-130. doi: 10.13832/j.jnpe.2023.S1.0125

Research on Influence of Structural Parameters on Shielding Efficiency of Al-based Foam Metal

doi: 10.13832/j.jnpe.2023.S1.0125
  • Received Date: 2022-12-25
  • Rev Recd Date: 2023-02-06
  • Publish Date: 2023-06-15
  • Metal foam is characterized with excellent γ-ray shielding ability and lightweight. However, the relationship between its structural parameters and the radiation shielding performance is not clear, which blocks the further optimization of shielding properties. In this paper, two simulation models of densest packing spheres are constructed, then the shielding performance of ideal Al-based foam metal with various structural parameters is calculated by Monte Carlo. It is found that the Al-based foam metal’s shielding capacity against soft γ-ray with energy below 0.24 MeV is better than that of A356. Packing density of hollow spheres is the dominant controllable route to optimize the shielding performance of Al-based foam metal: and the lighter the material is, the better the performance is within its suitable radiation shielding energy range. The mode of packing is the most critical factor to affect the shielding capacity against γ-ray from 137Cs and 60Co sources. Preparation of face centered cubic densest packing sphere Al-based foam metal will weaken its inferiority in shielding harder γ-ray.

     

  • loading
  • [1]
    方楠,陕临喆,王敏. 国外超轻金属材料最新进展及其军用潜力分析[J]. 军民两用技术与产品,2020(3): 8-14. doi: 10.19385/j.cnki.1009-8119.2020.03.002
    [2]
    CHEN S, MARX J, RABIEI A. Experimental and computational studies on the thermal behavior and fire retardant properties of composite metal foams[J]. International Journal of Thermal Sciences, 2016, 106: 70-79. doi: 10.1016/j.ijthermalsci.2016.03.005
    [3]
    RABIEI A, VENDRA L J. A comparison of composite metal foam's properties and other comparable metal foams[J]. Materials Letters, 2009, 63(5): 533-536. doi: 10.1016/j.matlet.2008.11.002
    [4]
    MARX J C, ROBBINS S J, GRADY Z A, et al. Polymer infused composite metal foam as a potential aircraft leading edge material[J]. Applied Surface Science, 2020, 505: 144114. doi: 10.1016/j.apsusc.2019.144114
    [5]
    王淼,王录才. 泡沫铝及其复合结构的制备和应用现状[J]. 材料导报,2015, 29(3): 81-84.
    [6]
    ZHANG Y, CHEN F D, TANG X B, et al. Preparation and characterization of paraffin/nickel foam composites as neutron-shielding materials[J]. Journal of Composite Materials, 2018, 52(7): 953-962. doi: 10.1177/0021998317717596
    [7]
    RABIEI A, O’NEILL A T. A study on processing of a composite metal foam via casting[J]. Materials Science and Engineering:A, 2005, 404(1-2): 159-164. doi: 10.1016/j.msea.2005.05.089
    [8]
    CHEN S, BOURHAM M, RABIEI A. Novel light-weight materials for shielding gamma ray[J]. Radiation Physics and Chemistry, 2014, 96: 27-37. doi: 10.1016/j.radphyschem.2013.08.001
    [9]
    CHEN S, BOURHAM M, RABIEI A. Neutrons attenuation on composite metal foams and hybrid open-cell Al foam[J]. Radiation Physics and Chemistry, 2015, 109: 27-39. doi: 10.1016/j.radphyschem.2014.11.003
    [10]
    龚军军,陈志刚,黄颂新,等. 新型耐高温中子屏蔽复合材料的设计制备及性能研究[J]. 原子能科学技术,2021, 55(7): 1323-1330.
    [11]
    张哲维,王文先,张鹏,等. MC方法研究颗粒变化影响B4C/Al中子吸收性能的机制[J]. 太原理工大学学报,2015, 46(4): 385-388,413.
    [12]
    邱飒蔚,张新娜,郝青显,等. 泡沫金属材料仿真建模的研究进展(英文)[J]. 稀有金属材料与工程,2015, 44(11): 2670-2676.
    [13]
    王梦梦. 基于孔隙结构控制的闭孔泡沫铝性能参数及应用研究[D]. 秦皇岛: 燕山大学, 2017.
    [14]
    BROWN D A, CHADWICK M B, CAPOTE R, et al. ENDF/B-VIII. 0: The 8th major release of the nuclear reaction data library with Cielo-project cross sections, new standards and thermal scattering data[J]. Nuclear Data Sheets, 2018, 148: 1-142. doi: 10.1016/j.nds.2018.02.001
    [15]
    POLLITT A J, SMITH A G, TSEKHANOVICH I, et al. Measurements of γ-ray energy and multiplicity from 235U(nthermal) using STEFF[J]. EPJ Web of Conferences, 2015, 93: 02018. doi: 10.1051/epjconf/20159302018
    [16]
    白鸿伟,李达,郭寻,等. 基于蒙特卡罗方法的复合材料辐射屏蔽设计[J]. 辐射防护,2022, 42(1): 41-47. doi: 10.3969/j.issn.1000-8187.2022.1.fsfh202201009
    [17]
    BURRUS W R. How channeling between chunks raises neutron transmission through Boral[J]. Nucleonics, 1956, 16(1): 91-94.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (123) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return