Advance Search
Volume 44 Issue S1
Jun.  2023
Turn off MathJax
Article Contents
Jia Yuzhen, Qiu Jun, Cheng Zhuqing, Yang Zhongbo. Effect of Final Annealing Temperature on Microstructure and Properties of N36 Alloy Tube[J]. Nuclear Power Engineering, 2023, 44(S1): 163-167. doi: 10.13832/j.jnpe.2023.S1.0163
Citation: Jia Yuzhen, Qiu Jun, Cheng Zhuqing, Yang Zhongbo. Effect of Final Annealing Temperature on Microstructure and Properties of N36 Alloy Tube[J]. Nuclear Power Engineering, 2023, 44(S1): 163-167. doi: 10.13832/j.jnpe.2023.S1.0163

Effect of Final Annealing Temperature on Microstructure and Properties of N36 Alloy Tube

doi: 10.13832/j.jnpe.2023.S1.0163
  • Received Date: 2023-02-21
  • Rev Recd Date: 2023-05-10
  • Publish Date: 2023-06-15
  • In order to optimize and control the microstructure and properties of N36 alloy tube, the effect of final annealing temperature on the microstructure and properties of N36 alloy tube was studied by analyzing the performance data of N36 alloy tube at different final annealing temperatures (520~560°C). The results show that different final annealing temperatures mainly affect the recrystallization fraction and grain size of the N36 alloy tubes, while have little influence on the second phase particles. The higher the final annealing temperature, the higher the recrystallization fraction and the larger the grain size of N36 alloy tube. With the increase of final annealing temperature, the room temperature and high temperature axial and circumferential tensile strength decreased and the elongation increased significantly, which was mainly caused by the influence of final annealing process on the recrystallization fraction and grain size of N36 alloy tube. With the increase of final annealing temperature, the corrosion resistance of N36 alloy tube is improved, and the corrosion resistance of N36 alloy tube with final annealing temperature of 560°C is obviously better than other tubes, mainly due to the highest recrystallization fraction of N36 alloy pipe with final annealing temperature of 560°C.

     

  • loading
  • [1]
    SABOL G, COMSTOCK R J, WEINER R A, et al. In-reactor corrosion performance of ZIRLO and zircaloy-4[C]//Zirconium in the Nuclear Industry: Tenth International Symposium. Philadelphia: ASTM International, 1994: 724-743.
    [2]
    NOVIKOV V V, MARKELOV V A, TSELISHCHEV A V, et al. Structure-phase changes and corrosion behavior of E110 and E635 claddings of fuels in water cooled reactors[J]. Journal of Nuclear Science and Technology, 2006, 43(9): 991-997. doi: 10.1080/18811248.2006.9711187
    [3]
    JEONG Y H, PARK S Y, LEE M H, et al. Out-of-pile and in-pile perfomance of advanced zirconium alloys (HANA) for high burn-up fuel[J]. Journal of Nuclear Science and Technology, 2006, 43(9): 977-983. doi: 10.1080/18811248.2006.9711185
    [4]
    赵文金,周邦新,苗志,等. 我国高性能锆合金的发展[J]. 原子能科学技术,2005, 39(S1): 2-9.
    [5]
    ANADA H, NOMOTO K, SHIDA Y. Corrosion behavior of zircaloy-4 sheets produced under various hot-rolling and annealing conditions[C]//Zirconium in the Nuclear Industry: Tenth International Symposium. Philadelphia: ASTM International, 1994: 307-327.
    [6]
    GARDE A M. Enhancement of aqueous corrosion of zircaloy-4 due to hydride precipitation at the metal-oxide interface[C]//Zirconium in the Nuclear Industry: Ninth International Symposium. Philadelphia: ASTM International, 1991: 566-591.
    [7]
    SCHEMEL J J, CHARQUET D, WADIER J F. Influence of the manufacturing process on the corrosion resistance of zircaloy-4 cladding[C]//Zirconium in the Nuclear Industry: Eighth International Symposium. Philadelphia: ASTM International, 1989: 141-152.
    [8]
    RUDLING P, PETTERSSON H, ANDERSSON T, et al. Corrosion performance of zircaloy-2 and zircaloy-4 PWR fuel cladding[C]//Zirconium in the Nuclear Industry: Eighth International Symposium. Philadelphia: ASTM International, 1989: 213-226.
    [9]
    YANG Z B, LIAO J J, QIU S Y, et al. Effect of final annealing temperature on corrosion resistance of sza-6 zirconium alloy cladding tubes[J]. Materials Science Forum, 2019, 944: 488-498. doi: 10.4028/www.scientific.net/MSF.944.488
    [10]
    PARK J Y, JEONG Y H, JUNG Y H. Effects of precipitation characteristics on the out-of-pile corrosion behavior of niobium-containing zirconium alloys[J]. Metals and Materials International, 2001, 7(5): 447-455. doi: 10.1007/BF03027086
    [11]
    BAEK J H, JEONG Y H, KIM I S. Effects of the accumulated annealing parameter on the corrosion characteristics of a Zr-0.5Nb-1.0Sn-0.5Fe-0.25Cr alloy[J]. Journal of Nuclear Materials, 2000, 280(2): 235-245. doi: 10.1016/S0022-3115(99)00288-3
    [12]
    MARDON J P, CHARQUET D, SENEVAT J. et al. Influence of composition and fabrication process on out-of-pile and in-pile properties of M5 alloy[C]//Zirconium in the Nuclear Industry: Twelfth International Symposium. West Conshohocken: ASTM International, 2000: 505-524.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (100) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return