Citation: | Liu Zhenhai, Qi Feipeng, Zhou Yi, Li Yuanming, Li Wenjie, Zeng Wei, Xin Yong, Wang Haoyu, Ma Chao. Research on Construction Method of a Machine Learning-Based Fuel Rod Temperature Distribution Surrogate Model[J]. Nuclear Power Engineering, 2023, 44(S2): 1-5. doi: 10.13832/j.jnpe.2023.S2.0001 |
[1] |
BONNAUD E, BERNARD C, VAN SCHEL E. COPERNIC: a state-of-the-art fuel rod performance code[J]. Transactions of the American Nuclear Society, 1997, 77: 971125.
|
[2] |
王东东,杨红义,王端,等. 中国实验快堆热工参数的自适应BP神经网络预测方法研究[J]. 原子能科学技术,2020, 54(10): 1809-1816.
|
[3] |
洪亮,金鑫,刘虓瀚,等. 机器学习算法在燃料棒温度性能预测中的应用[J]. 深圳大学学报: 理工版,2022, 39(5): 515-520.
|
[4] |
CHE Y F, YURKO J, SEURIN P, et al. Machine learning-assisted surrogate construction for full-core fuel performance analysis[J]. Annals of Nuclear Energy, 2022, 168: 108905. doi: 10.1016/j.anucene.2021.108905
|
[5] |
阎昌琪,曹欣荣. 核反应堆工程[M]. 哈尔滨: 哈尔滨工程大学出版社,2004: 160.
|
[6] |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
|
[7] |
PASZKE A, GROSS S, MASSA F, et al. PyTorch: an imperative style, high-performance deep learning library[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc, 2019.
|
[8] |
LIU D C, NOCEDAL J. On the limited memory BFGS method for large scale optimization[J]. Mathematical Programming, 1989, 45(1-3): 503-528. doi: 10.1007/BF01589116
|
[9] |
SUN L N, GAO H, PAN S W, et al. Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 361: 112732. doi: 10.1016/j.cma.2019.112732
|
[10] |
PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: machine learning in python[J]. The Journal of Machine Learning Research, 2011, 12: 2825-2830.
|