Advance Search
Volume 44 Issue S2
Dec.  2023
Turn off MathJax
Article Contents
Ma Zhengqing, Pang Hua, Zhang Kun, Tang Changbing, Wu Zhouzhi, Yan Feng, Xing Shuo. Three Dimensionnal Simulation Investigation of Wedged Pellet-Clad Interaction Problem in Fuel Rod[J]. Nuclear Power Engineering, 2023, 44(S2): 6-10. doi: 10.13832/j.jnpe.2023.S2.0006
Citation: Ma Zhengqing, Pang Hua, Zhang Kun, Tang Changbing, Wu Zhouzhi, Yan Feng, Xing Shuo. Three Dimensionnal Simulation Investigation of Wedged Pellet-Clad Interaction Problem in Fuel Rod[J]. Nuclear Power Engineering, 2023, 44(S2): 6-10. doi: 10.13832/j.jnpe.2023.S2.0006

Three Dimensionnal Simulation Investigation of Wedged Pellet-Clad Interaction Problem in Fuel Rod

doi: 10.13832/j.jnpe.2023.S2.0006
  • Received Date: 2023-07-10
  • Rev Recd Date: 2023-08-03
  • Publish Date: 2023-12-30
  • The pellet-clad interaction (PCI) is one of the reasons leading to breach of cladding. The fracture generated by pellet cracking could wedge into the gap between pellet and caldding, resulting the wedged PCI problem. This problem may cause the local stress of the cladding to exceed the limit value and increase the risk of cladding damage. In order to evaluate the influence of wedged PCI on the performance of fuel rods, a three-dimensional finite element fuel element performance analysis method was established based on MOOSE, a multi-physical coupling finite element platform. In this method, the radiation effect and thermal-mechanical coupling effect are considered comprehensively, and the numerical simulation of wedged PCI problem is completed for the single pellet model. The results show that the wedged PCI problem can change the temperature distribution, stress distribution and strain distribution of the cladding, increase the maximum Mises stress and equivalent creep strain of the cladding, and increase the risk of fuel rod failure.

     

  • loading
  • [1]
    International Atomic Energy Agency. Review of fuel failures in water cooled reactors: NF-T-2.1[R]. Vienna: IAEA, 2010.
    [2]
    GROESCHEL, F, BART G, MONTGOMERY R, et al. Failure root cause of a PCI suspect liner fuel rod: IAEA-TECDOC-1345[R]. Vienna: IAEA, 2003.
    [3]
    杨震,苏光辉,田文喜,等. 水堆燃料元件性能分析及程序FROBA开发[J]. 原子能科学技术,2012, 46(5): 590-595.
    [4]
    王志超. 燃料棒性能分析程序START-3简介[J]. 科技与生活,2012(14): 166,159.
    [5]
    刑硕,姚栋,李文杰,等. 燃料棒性能分析程序COPERNIC的初步研究[Z]. 2009 .
    [6]
    DUNNE F, PETRINIC N. Introduction to computational plasticity[M]. Oxford: Oxford University Press, 2005: 146-153. .
    [7]
    MACDONALD P E, THOMPSON L B. MATPRO: version 09. A handbook of materials properties for use in the analysis of light water reactor fuel rod behavior: TREE-NUREG-1005[R]. Idaho Falls: Idaho National Engineering Lab, 1976: 276.
    [8]
    HAGRMAN D L, REYMAN G A. MATPRO-version 11: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior: NUREG/CR-0497[R]. Idaho Falls: Idaho National Engineering Lab, 1979: 225.
    [9]
    PONTEDEIRO A C, COTTA R M, SU J. Improved lumped model for thermal analysis of high burn-up nuclear fuel rods[J]. Progress in Nuclear Energy, 2008, 50(7): 767-773. doi: 10.1016/j.pnucene.2008.01.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (107) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return