Citation: | Zhang Guangchun, Zhang Haochun. Research on CMFD Preconditioner for Two-dimensional MOC Krylov Subspace Iteration[J]. Nuclear Power Engineering, 2023, 44(S2): 120-125. doi: 10.13832/j.jnpe.2023.S2.0120 |
[1] |
ASKEW J R. A characteristics formulation of the neutron transport equation in complicated geometries[R]. Vienna: International Atomic Energy Agency, 1972.
|
[2] |
HÉBERT A. Applied reactor physics[M]. Montréal: Presses Internationales Polytechnique, 2009: 150-162.
|
[3] |
STIMPSON S, COLLINS B, DOWNAR T. A 2-D/1-D transverse leakage approximation based on azimuthal, Fourier moments[J]. Nuclear Science and Engineering, 2017, 185(2): 243-262. doi: 10.1080/00295639.2016.1272360
|
[4] |
BOYD W, SHANER S, LI L L, et al. The OpenMOC method of characteristics neutral particle transport code[J]. Annals of Nuclear Energy, 2014, 68: 43-52. doi: 10.1016/j.anucene.2013.12.012
|
[5] |
LARSEN E W, MOREL J E. Advances in discrete-ordinates methodology[M]//AZMY Y, SARTORI E. Nuclear Computational Science: A Century in Review. Dordrecht: Springer, 2010: 1-84.
|
[6] |
OLIVEIRA S, DENG Y H. Preconditioned Krylov subspace methods for transport equations[J]. Progress in Nuclear Energy, 1998, 33(1-2): 155-174. doi: 10.1016/S0149-1970(97)00099-1
|
[7] |
PATTON B W, HOLLOWAY J P. Application of preconditioned GMRES to the numerical solution of the neutron transport equation[J]. Annals of Nuclear Energy, 2002, 29(2): 109-136. doi: 10.1016/S0306-4549(01)00034-2
|
[8] |
WARSA J S, WAREING T A, MOREL J E. Krylov iterative methods and the degraded effectiveness of diffusion synthetic acceleration for multidimensional SN calculations in problems with material discontinuities[J]. Nuclear Science and Engineering, 2004, 147(3): 218-248. doi: 10.13182/NSE02-14
|
[9] |
SAAD Y, SCHULTZ M H. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(3): 856-869. doi: 10.1137/0907058
|
[10] |
SAAD Y. Numerical methods for large eigenvalue problems[M]. New York: Halsted Press, 1992: 68-93.
|
[11] |
DAHMANI M, TELLIER R L, ROY R, et al. An efficient preconditioning technique using Krylov subspace methods for 3D characteristics solvers[J]. Annals of Nuclear Energy, 2005, 32(8): 876-896. doi: 10.1016/j.anucene.2005.01.004
|
[12] |
YOO H J, CHO N Z. Coarse mesh rebalance acceleration revisited: Krylov preconditioning[C]//Joint International Topical Meeting on Mathematics & Computations and Supercomputing in Nuclear Applications. Monterey: American Nuclear Society, 2007: 314-324.
|
[13] |
SUSLOV I R. An algebraic collapsing acceleration method for acceleration of the inner (scattering) iterations in long characteristics transport theory[C]//International Conference on Supercomputing in Nuclear Applications SNA'2003. Paris: International Atomic Energy Agency, 2003: 22-24.
|
[14] |
STEPANEK J, AUERBACH T, HALG W. Calculation of four thermal benchmarks in X-Y geometry: EIR-Bericht Nr. 464[R]. Federal Institute of Technology ETH, 1982.
|
[15] |
SMITH M A, LEWIS E E, NA B C. Benchmark on deterministic transport calculations without spatial homogenisation. MOX fuel assembly 3-D extension case[M]. Paris: Organisation for Economic Co-operation and Development - Nuclear Energy Agency, 2005.
|