Advance Search
Volume 44 Issue S2
Dec.  2023
Turn off MathJax
Article Contents
Zhang Guangchun, Zhang Haochun. Research on CMFD Preconditioner for Two-dimensional MOC Krylov Subspace Iteration[J]. Nuclear Power Engineering, 2023, 44(S2): 120-125. doi: 10.13832/j.jnpe.2023.S2.0120
Citation: Zhang Guangchun, Zhang Haochun. Research on CMFD Preconditioner for Two-dimensional MOC Krylov Subspace Iteration[J]. Nuclear Power Engineering, 2023, 44(S2): 120-125. doi: 10.13832/j.jnpe.2023.S2.0120

Research on CMFD Preconditioner for Two-dimensional MOC Krylov Subspace Iteration

doi: 10.13832/j.jnpe.2023.S2.0120
  • Received Date: 2023-07-11
  • Rev Recd Date: 2023-09-13
  • Publish Date: 2023-12-30
  • To improve the efficiency of the Krylov subspace iteration for two-dimensional method of characteristics (MOC), a preconditioner based on the coarse-mesh finite difference (CMFD) matrix is proposed. Firstly, the CMFD acceleration method is linearized and the linear CMFD preconditioner is derived. Secondly, the linear CMFD preconditioner is applied to the Krylov subspace method to solve the two-dimensional MOC equation. Finally, the acceleration performance of the linear CMFD preconditioner is tested using the IAEA LWR and 2-D C5G7 benchmarks. The results show that, after applying the CMFD preconditioner, the iteration count for the IAEA LWR benchmark is reduced by 52.7%, and the computational time is decreased by 41.8%. For the 2-D C5G7 benchmark, the iteration count is reduced by 20.3% and the computational time is reduced by 13.2%. The study also finds that the CMFD preconditioner works well for problems with weak local heterogeneities, but its performance decreases for problems with strong local heterogeneities.

     

  • loading
  • [1]
    ASKEW J R. A characteristics formulation of the neutron transport equation in complicated geometries[R]. Vienna: International Atomic Energy Agency, 1972.
    [2]
    HÉBERT A. Applied reactor physics[M]. Montréal: Presses Internationales Polytechnique, 2009: 150-162.
    [3]
    STIMPSON S, COLLINS B, DOWNAR T. A 2-D/1-D transverse leakage approximation based on azimuthal, Fourier moments[J]. Nuclear Science and Engineering, 2017, 185(2): 243-262. doi: 10.1080/00295639.2016.1272360
    [4]
    BOYD W, SHANER S, LI L L, et al. The OpenMOC method of characteristics neutral particle transport code[J]. Annals of Nuclear Energy, 2014, 68: 43-52. doi: 10.1016/j.anucene.2013.12.012
    [5]
    LARSEN E W, MOREL J E. Advances in discrete-ordinates methodology[M]//AZMY Y, SARTORI E. Nuclear Computational Science: A Century in Review. Dordrecht: Springer, 2010: 1-84.
    [6]
    OLIVEIRA S, DENG Y H. Preconditioned Krylov subspace methods for transport equations[J]. Progress in Nuclear Energy, 1998, 33(1-2): 155-174. doi: 10.1016/S0149-1970(97)00099-1
    [7]
    PATTON B W, HOLLOWAY J P. Application of preconditioned GMRES to the numerical solution of the neutron transport equation[J]. Annals of Nuclear Energy, 2002, 29(2): 109-136. doi: 10.1016/S0306-4549(01)00034-2
    [8]
    WARSA J S, WAREING T A, MOREL J E. Krylov iterative methods and the degraded effectiveness of diffusion synthetic acceleration for multidimensional SN calculations in problems with material discontinuities[J]. Nuclear Science and Engineering, 2004, 147(3): 218-248. doi: 10.13182/NSE02-14
    [9]
    SAAD Y, SCHULTZ M H. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(3): 856-869. doi: 10.1137/0907058
    [10]
    SAAD Y. Numerical methods for large eigenvalue problems[M]. New York: Halsted Press, 1992: 68-93.
    [11]
    DAHMANI M, TELLIER R L, ROY R, et al. An efficient preconditioning technique using Krylov subspace methods for 3D characteristics solvers[J]. Annals of Nuclear Energy, 2005, 32(8): 876-896. doi: 10.1016/j.anucene.2005.01.004
    [12]
    YOO H J, CHO N Z. Coarse mesh rebalance acceleration revisited: Krylov preconditioning[C]//Joint International Topical Meeting on Mathematics & Computations and Supercomputing in Nuclear Applications. Monterey: American Nuclear Society, 2007: 314-324.
    [13]
    SUSLOV I R. An algebraic collapsing acceleration method for acceleration of the inner (scattering) iterations in long characteristics transport theory[C]//International Conference on Supercomputing in Nuclear Applications SNA'2003. Paris: International Atomic Energy Agency, 2003: 22-24.
    [14]
    STEPANEK J, AUERBACH T, HALG W. Calculation of four thermal benchmarks in X-Y geometry: EIR-Bericht Nr. 464[R]. Federal Institute of Technology ETH, 1982.
    [15]
    SMITH M A, LEWIS E E, NA B C. Benchmark on deterministic transport calculations without spatial homogenisation. MOX fuel assembly 3-D extension case[M]. Paris: Organisation for Economic Co-operation and Development - Nuclear Energy Agency, 2005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (380) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return