Citation: | Ning Zhien, Wu Lu, Zhang Wei, Fang Zhongqiang, Mao Jianjun, Kong Xianggang. Comparative Study on Corrosion Resistance of TaSiCN, TaAlSiCN and TaCrSiCN Coatings in NaCl-KCl Molten Salt[J]. Nuclear Power Engineering, 2023, 44(S2): 193-200. doi: 10.13832/j.jnpe.2023.S2.0193 |
[1] |
CHEN L, WANG J, ZONG Z H, et al. A new rock mass classification system QHLW for high-level radioactive waste disposal[J]. Engineering Geology, 2015, 190: 33-51. doi: 10.1016/j.enggeo.2015.02.006
|
[2] |
TANABE H, INAGAKI Y. The state of the art for high level radioactive waste (HLW) disposal in various countries[J]. Soil Mechanics & Foundation Engineering, 1998, 46: 15-18.
|
[3] |
CRISTALDI M, IERADI L A, LICASTRO E, et al. Environmental impact of nuclear power plants on wild rodents[J]. Acta Zoologica Fennica, 1985, 173: 205-207.
|
[4] |
SHANKAR A R, THYAGARAJAN K, MUDALI U K. Corrosion behavior of candidate materials in molten LiCl-KCl salt under argon atmosphere[J]. Corrosion, 2013, 69(7): 655-665. doi: 10.5006/0746
|
[5] |
NING Z E, LUO X F, ZHANG W, et al. Corrosion resistance of TaSiCN coatings in NaCl-KCl molten salt[J]. Materials Research Express, 2019, 6(10): 106437. doi: 10.1088/2053-1591/ab3ed6
|
[6] |
KUPTSOV K A, KIRYUKHANTSEV-KORNEEV P V, SHEVEYKO A N, et al. Comparative study of electrochemical and impact wear behavior of TiCN, TiSiCN, TiCrSiCN, and TiAlSiCN coatings[J]. Surface and Coatings Technology, 2013, 216: 273-281. doi: 10.1016/j.surfcoat.2012.11.058
|
[7] |
MANULYK A. Oxidation resistance mechanism of TiAlSiCN and TiCrSiCN compositions made by plasma spark sintering at 1200℃[M]//SINGH M, OHJI T, DONG S, et al. Advances in High Temperature Ceramic Matrix Compo Sites and Materials for Sustainable Development; Ceramic Transactions, Volume CCLXIII. The American Ceramic Society, 2017: 341-351.
|
[8] |
SHTANSKY D V, KUPTSOV K A, KIRYUKHANTSEV-KORNEEV P V, et al. Comparative investigation of Al- and Cr-doped TiSiCN coatings[J]. Surface and Coatings Technology, 2011, 205(19): 4640-4648. doi: 10.1016/j.surfcoat.2011.04.012
|
[9] |
SHTANSKY D V, LEVASHOV E A, SHEVEIKO A N, et al. The structure and properties of Ti–B–N, Ti–Si–B–N, Ti–Si–C–N, and Ti–Al–C–N coatings deposited by magnetron sputtering using composite targets produced by self-propagating high-temperature synthesis (SHS)[J]. Journal of Materials Synthesis and Processing, 1998, 6(1): 61-72. doi: 10.1023/A:1022663210694
|
[10] |
CÓRDOBA J M, CHICARDI E, POYATO R, et al. Spark plasma sintering of Ti x Ta1− x C0.5N0.5-based cermets: effects of processing conditions on chemistry, microstructure and mechanical properties[J]. Chemical Engineering Journal, 2013, 230: 558-566. doi: 10.1016/j.cej.2013.06.104
|
[11] |
XIE Z W, WANG L P, WANG X F, et al. Influence of high temperature annealing on the structure, hardness and tribological properties of diamond-like carbon and TiAlSiCN nanocomposite coatings[J]. Applied Surface Science, 2011, 258(3): 1206-1211. doi: 10.1016/j.apsusc.2011.09.072
|
[12] |
ABD EL-RAHMAN A M, WEI R H. Effect of ion bombardment on structural, mechanical, erosion and corrosion properties of Ti–Si–C–N nanocomposite coatings[J]. Surface and Coatings Technology, 2014, 258: 320-328. doi: 10.1016/j.surfcoat.2014.09.006
|
[13] |
SHTANSKY D V, KUPTSOV K A, KIRYUKHANTSEV-KORNEEV P V, et al. High thermal stability of TiAlSiCN coatings with “comb” like nanocomposite structure[J]. Surface and Coatings Technology, 2012, 206(23): 4840-4849. doi: 10.1016/j.surfcoat.2012.05.068
|
[14] |
MANULYK A. MAX phases: understanding of erosion, corrosion and oxidation resistance properties in TiAlSiCN and TiCrSiCN compositions[J]. MRS Online Proceedings Library, 2016, 1812(1): 9-15.
|
[15] |
XU H, NIE X, WEI R. Tribological behavior of a TiSiCN coating tested in air and coolant[J]. Surface and Coatings Technology, 2006, 201(7): 4236-4241. doi: 10.1016/j.surfcoat.2006.08.066
|
[16] |
WANG Y, LI J L, DANG C Q, et al. Influence of carbon contents on the structure and tribocorrosion properties of TiSiCN coatings on Ti6Al4V[J]. Tribology International, 2017, 109: 285-296. doi: 10.1016/j.triboint.2017.01.002
|
[17] |
LIN J L, WEI R H, GE F F, et al. TiSiCN and TiAlVSiCN nanocomposite coatings deposited from Ti and Ti-6Al-4V targets[J]. Surface and Coatings Technology, 2018, 336: 106-116. doi: 10.1016/j.surfcoat.2017.10.009
|
[18] |
VEPREK S, VEPREK-HEIJMAN M G J. The formation and role of interfaces in superhard nc-MenN/a-Si3N4 nanocomposites[J]. Surface and Coatings Technology, 2007, 201(13): 6064-6070. doi: 10.1016/j.surfcoat.2006.08.112
|
[19] |
VEPREK S, ZHANG R F, VEPREK-HEIJMAN M G J, et al. Superhard nanocomposites: origin of hardness enhancement, properties and applications[J]. Surface and Coatings Technology, 2010, 204(12-13): 1898-1906. doi: 10.1016/j.surfcoat.2009.09.033
|
[20] |
VEPREK S, VEPREK-HEIJMAN M G J, KARVANKOVA P, et al. Different approaches to superhard coatings and nanocomposites[J]. Thin Solid Films, 2005, 476(1): 1-29. doi: 10.1016/j.tsf.2004.10.053
|
[21] |
PETROV I, MYERS A, GREENE J E, et al. Mass and energy resolved detection of ions and neutral sputtered species incident at the substrate during reactive magnetron sputtering of Ti in mixed Ar+N2 mixtures[J]. Journal of Vacuum Science & Technology A, 1994, 12(5): 2846-2854.
|
[22] |
WEI R, LANGA E, RINCON C, et al. Deposition of thick nitrides and carbonitrides for sand erosion protection[J]. Surface and Coatings Technology, 2006, 201(7): 4453-4459. doi: 10.1016/j.surfcoat.2006.08.091
|
[23] |
STANDARDS N I O. NIST X-ray Photoelectron Spectroscopy Database[Z]. 2001.
|
[24] |
CHOI S R, PARK I W, KIM S H, et al. Effects of bias voltage and temperature on mechanical properties of Ti–Si–N coatings deposited by a hybrid system of arc ion plating and sputtering techniques[J]. Thin Solid Films, 2004, 447-448: 371-376. doi: 10.1016/S0040-6090(03)01085-X
|
[25] |
SCHOCK M R. Response of lead solubility to dissolved carbonate in drinking water[J]. Journal AWWA, 1980, 72(12): 695-704. doi: 10.1002/j.1551-8833.1980.tb04616.x
|